Данное изобретение относится к переработке отработанного ядерного топлива и конкретно касается отделения урана от плутония и нептуния.
Большинство заводов по переработке ядерного топлива использует способ Рurех, в котором отработанное топливо растворяют в азотной кислоте и растворенные уран и плутоний затем экстрагируются из раствора в азотной кислоте в органическую фазу, представляющую собой трибутилфосфат (ТБФ), растворенный в инертном углеводороде, таком как керосин, не имеющий запаха.
Органическая фаза обычно подвергается разделению продуктов расщепления при помощи метода экстракции и в некоторых случаях последующему удалению технеция перед так называемым разделением U/Pu. При разделении U/Pu Pu (IV) восстанавливается до Pu (III), который не экстрагируется органической фазой и следовательно увлекается водным потоком, в то время как U остается в потоке органической фазы. Обычно восстановителем, используемым при разделении U/Pu, является U (IV). Np (VI) в потоке растворителя также восстанавливается U (IV) до Np (IV). Последний экстрагируется растворителем и поэтому находится в контакте с U в потоке растворителя. Для стабилизации U (IV) и Pu (III) против окисления, особенно азотной кислотой, обычно используют нитрат гидразина. Установка для разделения U и Рu на практике включает контактный фильтр, имеющий несколько зон, например, в современном центробежном контактном фильтре может быть шесть зон.
Такой способ имеет недостатки:
- гидразин каталитически разлагается ионами Тc (VII);
- при определенных условиях гидразин может образовать нежелательные продукты окисления (например, соли аммония);
- U (IV) нужно получать отдельным процессом на установке, что приводит к увеличению расходов;
- требуется два реагента;
- Np не отделяется от U, поэтому необходимы дополнительные способы с нисходящим потоком для удаления Np из U.
Недостатком используемых в настоящее время промышленных способов Purex является то, что в них применяется автоматическая схема, состоящая из трех циклов [(1) так называемый НА цикл, в котором продукты деления разделяются и осуществляется разделение U/Pu; (2) UP цикл, в котором поток урана очищается; (3) РР цикл, в котором очищается поток плутония]. Следовательно желательно создание усовершенствованного способа Purex, в котором имеется один цикл экстракции растворителями.
Более того, в способе Purex может представлять проблему контроля за валентностью нептуния. В способе Purex нептуний содержится в виде смеси с тремя разными валентностями: Np (IV), (V), (VI). Np (IV) и (VI) оба экстрагируются растворителем, в то время как Np (V) не экстрагируется в эту фазу. Для того чтобы направить Np в потоки очищенного раствора, Np обычно стабилизируют в (V) состоянии. Это является сложным, так как это не только среднее из трех состояние окисления, но Np (V) также подвергается конкурирующим взаимодействиям, таким как диспропорционирование до Np (IV) и (VI), и окисляется азотной кислотой до Np (VI). Контроль за нептунием следовательно затруднен, и такой эффективный контроль является основной целью усовершенствованной технологии повторной переработки. На промышленных заводах Purex Np обычно отделяется от урана во время очистки урана (ОУ). Np (IV) превращается в Np (V) и Np (VI) при нагревании в водной фазе в кондиционере при высокой температуре. Кондиционная жидкость подается в смеситель-отстойник для экстракции и промывки, где Np (V) передается в водный очищенный раствор. Любой Np (VI), находящийся в водной загрузке, восстанавливается до Np (V) гидроксиламином, который подается в зону для промывки в контактном фильтре. В обычном способе для очистки урана от Np требуется два или три смесителя-отстойника.
Проводились многочисленные исследования для нахождения замены системам U (IV) + гидразин с эффективным восстановителем для Pu (IV) и Np (VI). Среди изученных восстановителей были масляные альдегиды, гидрохиноны, замещенные гидрохиноны и замещенные гидроксиламины, такие как N-метилгидроксиламин и N,N-диэтилгидроксиламин (Yu-Keung Sze, Gosselin Y.A., Nucl. Technology, 1983, vol. 63, N 3, р.р. 431-441; Koltunov V.S., Baranov S.M. Padiokhimiya, 1993, vol. 35, N 6, р.р. 11-21; Koltunov V.S., Baranov S.M., International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems (Global-95), Sept. 1995, Versailles, France, Proceedings, vol. 1, p.p. 577-584).
Недостатком таких известных способов восстановления Np и Рu является то, что кинетически реакции протекают слишком медленно для небольших промежутков времени пребывания в центробежных или других контактных фильтрах, которые используются на современном заводе Purex. В частности, трудно подобрать восстановители, которые быстро восстанавливают Pu (IV) и это еще более трудно при использовании центробежных контактных фильтров.
Теперь было установлено, что Np (VI) и Pu (IV) могут быть совместно восстановлены оксимами (соединения формулы R2C=NOH, где каждое R независимо обозначает Н или органический заместитель, особенно алкил).
Данное изобретение предусматривает способ переработки отработанного топлива, согласно которому органическая фаза, содержащая Np (VI), контактирует с оксимом. Предпочтительными оксимами являются альдоксимы формулы RHC=NOH, где R обозначает органический заместитель. Органическим заместителем предпочтительно служит алкил. Подходящие органические (в частности, алкильные группы) включают группы, содержащие до 5 атомов углерода и особенно 1, 2 или 3 атома углерода, метил и пропил предпочтительны. Данное изобретение предусматривает применение альдоксимов с замещенной алкильной группой, в качестве заместителей могут быть HONH- и гидроксильная группы. Самым предпочтительным альдоксимом является ацетальдоксим формулы Н3ССН=NОН; другим предпочтительным соединением является бутиральдоксим формулы H3CCH2CH2CH=NOH. Оксим восстанавливает Np (VI) до Np (V), который может быть затем возвращен в водную фазу. Органическая фаза предпочтительно содержит U (VI) и Pu (IV), а также Np (VI), в этом случае оксим восстанавливает Pu (IV) до неэкстрагируемого Pu (III), который может быть возвращен в водную фазу вместе с Np (V). По меньшей мере в предпочтительных случаях, особенно использующих ацетальдоксим, бутиральдоксим или его гомологи, не происходит восстановления Np (V) до Np (IV), поэтому не является необходимой очистка продукта, содержащего U в нисходящем потоке. Если такая очистка будет необходимой или желательной, обработанный растворитель (органическая фаза) затем может быть приведен в контакт с гидрофильным комплексообразователем-восстановителем (предпочтительно формогидроксамовой кислотой) для получения комплекса с Np (IV) и восстановления всего Np (VI), который попадает во вторую водную фазу (WO 97/30456).
Согласно предпочтительным вариантам способа органическая фаза контактирует с оксимом, a Pu (III) и Np (V) при промывке возвращаются в первое контактное устройство в водную фазу. U в виде U (VI) остается в органической фазе и может быть затем возвращен при промывке в разбавленную азотную кислоту в последующий контактный аппарат обычным методом. Контактные устройства являются многостадийными.
Настоящее изобретение включает способ восстановления частиц, выбранных из Np (VI) и Pu (IV) до, соответственно Np (V) и Pu (III), причем способ заключается в контактировании частиц с оксимом. Конечно, Np (VI) и Pu (IV) могут быть совместно восстановлены контактированием частиц обоих видов с оксимом.
Данное изобретение далее описано со ссылкой на прилагаемый чертеж, на котором представлена схема способа Purex повторной переработки, иллюстрирующая способ по изобретению. В данном способе оксим (особенно ацетальдоксим или бутиральдоксим) используют для совместного восстановления Np (VI) и Pu (IV) на стадии разделения U/Pu, и полученный Np (V) направляется с плутониевым продуктом (Pu (III)).
На чертеже использованы следующие обозначения:
пунктирные стрелки = потоки растворителей
сплошные стрелки = водные потоки
Согласно предпочтительным вариантам изобретения раствор азотной кислоты, полученный при растворении отработанного топлива (загрузка НА на чертеже), обрабатывается для удаления продуктов деления и возможно Тс, например, обычным путем. Может быть добавлено специальное устройство для выделения Тс. Полученный поток органической фазы, содержащей U, Pu, Np и, в некоторых случаях, Тс, отправляют на стадию разделения U/Pu. Обычно уран содержится в виде U (VI), Pu - в виде Pu (IV) и Np - в виде Np (VI). При разделении U/Pu Np (VI) и Pu (IV) совместно восстанавливаются оксимом с получением неэкстрагируемых форм, Pu (III) и Np (V). Оксим также реагирует с HNO2, поэтому не требуется дополнительного поглотителя, такого как гидразин.
Водный поток, содержащий Np и Pu, может быть направлен на полирование для превращения в твердый продукт, например, обычным путем.
Можно обработанный растворитель подавать в установку для полирования Np/Pu для вымывания оставшихся Np или Pu в водную фазу. Два водных потока, содержащих Np и Pu, могут быть соединены вместе и поданы на установку для экстракции урана для повторной экстракции урана растворителем до превращения Np, Pu в твердый продукт. Продукт, содержащий Np, Pu, может применяться или сам по себе, или в производстве топлива СО (СО = смешанные окислы (U + Pu)).
Во втором варианте данного изобретения Np удаляется из потока растворителя, содержащего урановый продукт, в контактном устройстве для восстановительного разделения с применением оксима в качестве восстановителя для Np (VI) после обратной отмывки Pu из потока растворителя на стадии разделения U/Pu. Затем Np-237 может быть направлен для использования обычным способом.
Согласно предпочтительным вариантам способ согласно данному изобретению обеспечивает разделение Pu и Np, которое используется на промышленных установках повторной переработки. Соответственно, установка может быть меньше, уменьшаются потоки воды и растворителей, что обеспечивает экономические преимущества и охрану окружающей среды. Способ характеризуется эффективным контролем за содержанием Np (U, Np разделение) при использовании только оксима для восстановления Np. И Pu, и Np могут быть эффективно отделены от потока растворителя, содержащего U.
Еще одним преимуществом способа по изобретению является то, что U (IV) не используется как восстановитель. Следовательно, U (IV) не вымывается с Pu, Np-продуктом, который таким образом является более чистым. Способ дает возможность уменьшить число стадий при разделении U/Pu. Более того, к 235U, который должен быть выделен, не добавляется обедненный U (IV), и конечный урановый продукт более подходит для обогащения урана. Нет необходимости в получении U (IV) на отдельной установке или в его покупке, что обеспечивает дополнительные преимущества.
Обычные процессы Purex могут включать после разделения продуктов деления стадию отделения Тс. Причина этого заключается в том, что гидразин нитрат, обычно используемый для стабилизации U (IV) и Pu (III), участвует в автокаталитических реакциях с Тс и это приводит к дополнительному нежелательному расходу гидразина. Предпочтительно согласно настоящему изобретению не добавлять U (IV). Более того, предпочтительные оксимы, реагирующие с Тс только очень медленно, действуют как поглотитель азотистой кислоты и тем самым снижают повторное окисление Pu (III). Соответственно, гидразин может быть использован для других целей и, если для Pu, Np-содержащего продукта приемлем Тс с низкими качествами, можно также устранить стадию удаления Тс.
Следует отметить, что вышеописанный процесс является методом Purex, согласно которому поток активного растворителя, поступающий на стадию разделения U/Pu, обрабатывают оксимом для восстановления Pu (IV) до Pu (III) и Np (VI) до Np (V). Эти восстановленные частицы вымываются водным потоком и обработанный растворитель подается в воду обратной промывки U.
Таким образом изобретение обеспечивает получение Pu, Np-содержащего продукта в процессе переработки отработанного ядерного топлива. Это является преимуществом, так как Np является “сжигаемым” ядом для нейтронов, и если Pu используется повторно в качестве топлива, не имеет значения, присутствует ли Np. Далее преимуществом является получение загрязненного Pu, так как это предотвращает распространение ядерного оружия. Наконец, лучше удалять Np с Pu, чем с U, так как U не является очень радиоактивным и Np будет являться α-активным загрязняющим продуктом.
Уран и/или плутоний, выделенные способом по изобретению, могут быть сформованы в расщепляющийся материал, пригодный для использования при получении энергии, например, топливной таблетки. Примером расщепляющегося материала является топливо СО.
ПРИМЕР 1
Константы скорости первого и второго порядка были определены для реакции ацетальдоксима с Np (VI) и Pu (IV), соответственно. Определялось также время завершения реакции. Результаты приведены в таблице 1.
Скорость восстановления Np (VI) описывается
где k2=254±10 мин-1 при 26.0°С
и ЕАСТ=62.6±2.6 кДж/мол.
Скорость восстановления Pu (IV) описывается
где k=116±14 л0.3 мол0.3 при 19°С и μ = 2.
ПРИМЕР 2
Константы скорости первого и второго порядка были определены для реакции бутиральдоксима с Np (VI) и Pu (IV), соответственно. Определялось также время завершения реакции. Результаты приведены в таблице 2.
Можно видеть, что преимущество бутиральдоксима в том, что высокая ЕАСТ и высокий обратный порядок в отношении HNO3 обеспечивают достижение высоких скоростей реакции Рu (IV) при умеренном повышении температуры или уменьшении кислотности.
Изобретение предназначено для использования в области переработки ядерного топлива. Способ переработки отработанного ядерного топлива включает контакт содержащей Np (VI) органической фазы с оксимом формулы R2C=NOH. Каждое R независимо означает Н или органический заместитель. Способ также включает контакт содержащей U, Pu и Np органической фазы с оксимом формулы R2C=NOH, где каждое R независимо означает Н или органический заместитель. Оксим восстанавливает Pu (IV) до Pu (III) и Np (VI) до Np (V) и Pu (III). Осуществляется применение оксима формулы R2C=NOH для восстановления Np (VI) до Np (V). Осуществляется применение оксима формулы R2C=NOH для восстановления Pu (IV) до Pu (III). Осуществляется применение оксима формулы R2C=NOH для совместного восстановления Np (VI) до Np (V) и Pu (IV) до Pu (III). Обеспечивается большая эффективность в отделении урана от плутония и нептуния. 6 с. и 13 з.п. ф-лы, 1 ил., 2 табл.
УСТРОЙСТВО ДЛЯ РАСПОЗНАВАНИЯ СИТУАЦИЙ | 1991 |
|
RU2012057C1 |
Авторы
Даты
2004-05-20—Публикация
1998-08-20—Подача