СПОСОБ КОМПЕНСАЦИИ ВЛИЯНИЯ УРОВНЯ ТЕМПЕРАТУРЫ ЖИДКОСТИ НА ВХОДЕ ИЗМЕРИТЕЛЬНОГО КАНАЛА ТЕПЛОВОГО РАСХОДОМЕРА С ДАТЧИКАМИ ТЕПЛОВОГО ПОТОКА ОТ НАРУЖНОЙ ПОВЕРХНОСТИ ИЗМЕРИТЕЛЬНОГО КАНАЛА НА РЕЗУЛЬТАТ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОСТИ Российский патент 2004 года по МПК G01F1/68 G01K17/06 G01K17/20 

Описание патента на изобретение RU2232379C2

Предлагаемое изобретение относится к области метрологии, связанный с измерениями расхода жидкостей и газов. Одним из методов является небольшое охлаждение (или нагрев) жидкости в измерительном канале расходомера (см. Кремлевский П.П. Расходомеры и счетчики количества, - Л.: Машиностроение, 1989, с. 375-380). Предполагаемый баланс теплообменника при этом (вынужденная конвекция)

Qк=G ср(t1-t2)=G cp Δ t,

где Qк – количество теплоты, отданной (или полученной) в измерительном канале;

G – массовый расход жидкости;

Ср – удельная теплоемкость жидкости;

t1 – температура жидкости на входе канала;

t2 – температура жидкости на выходе канала;

(см. Исаченко, Осипова, Сукомед. Теплопередача - М.: Энергия, с. 161, 164). Но в этой закономерности обычно принимается во внимание лишь Δ t, не учитывая влияния температуры t1, которое в некоторых случаях бывает определяющим. Одним из способов компенсации такого влияния является разделение измерительного канала на два ответвления (см. патент RU №2152599), не всегда, однако, дающее требуемый результат.

Задача решается предлагаемым способом компенсации влияния уровня температуры жидкости на выходе в измерительный канал теплового расходомера с датчиками теплового потока Qизм от наружной поверхности измерительного канала на результат измерения расхода жидкости по величинам Qизм и Δ t=t1-t2, где t1 и t2 – температура жидкости, соответственно, на входе и выходе измерительного канала, где встречно ЭДС датчиков теплового потока включает ЭДС датчика разности температуры t1 и температуры tн в точках теплового контакта окружающей канал среды или радиаторов с наружной поверхностью датчиков теплового потока.

По этому способу учитывается дополнительный теплообмен с окружающей средой за счет теплопередачи по стенкам канала и по сечению самой жидкости, поскольку при малых расходах (меньше 5% от МАХ) это будет основной процесс. В случае же прекращения расхода тепловой поток Qтп от входа канала в окружающую его среду будет осуществляться как в обычном стержне (хотя и сложного сечения), когда можно приближенно использовать известную формулу

(см. Исаченко, Осипова, Сукомед. - М.: Энергия, 1969, с. 48). Практически величину можно считать постоянной и заменить ее коэффициентом k. Отсюда получается, что Qтп зависит, в основном, от избыточной температуры (θ =t1–tн, где tн – температура окружающей среды (или радиаторов) в точках теплового контакта с наружной поверхностью датчиков теплового потока. Следовательно, получаем Qтп=kθ . Значит, при расходе G>0 тепловой поток от наружной поверхности канала, измеряемый датчиками, является суммой конвективного теплообмена и простой теплопроводности, т.е. Qизм=Qк+Qтп. Отсюда следует: Qк=Qизм–Qтп. Представив полученные значения в формулу теплового баланса, можно вычислить расход жидкости

Причем обе величины, Qизм и Qтп, зависят, в основном, от одной и той же разности температур (t1–tн), и поэтому при вычитании температурная зависимость от t1 и tн сводится к некоторому минимуму, определяемому экспериментально.

С применением термопарных датчиков температуры формула расхода примет вид

,

где k1E1=Qизм; k2E2=Qтп; k3E3рΔt, а k1, k2, k3 – коэффициенты преобразования. При этом коэффициенты k1 и k2 подбираются таким, чтобы при G=0 числитель тоже стал равен нулю.

Способ поясняется на чертеже, где в измерительном канале 1 создается разность температур Δ t за счет теплообмена с внешней средой (или радиаторами), измеряемого датчиками теплового потока 2.

Предлагаемый способ позволяет расширить диапазоны измерений тепловых расходомеров от 100% расхода до значения, близкого к нулю, что зависит только от разрешающей способности вторичной аппаратуры.

Похожие патенты RU2232379C2

название год авторы номер документа
ТЕПЛОСЧЕТЧИК-РАСХОДОМЕР 1998
  • Баталов С.С.
  • Черепанов В.Я.
RU2152599C1
Измеритель потока массы 2021
  • Баталов Станислав Семёнович
RU2784529C2
ТЕПЛОСЧЕТЧИК И СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ТЕПЛОНОСИТЕЛЯ В ВОДЯНЫХ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2006
  • Теплышев Вячеслав Юрьевич
  • Бурдунин Михаил Николаевич
  • Варгин Александр Александрович
RU2300088C1
ПРЕОБРАЗОВАТЕЛЬ РАСХОДА 2003
  • Баталов С.С.
  • Черепанов В.Я.
RU2247330C2
ТЕПЛОСЧЕТЧИК-РАСХОДОМЕР 1997
  • Баталов С.С.
  • Черепанов В.Я.
RU2182319C2
ТЕПЛОСЧЕТЧИК И СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ТЕПЛОНОСИТЕЛЯ В ОТКРЫТЫХ ВОДЯНЫХ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2006
  • Теплышев Вячеслав Юрьевич
  • Бурдунин Михаил Николаевич
  • Варгин Александр Александрович
RU2300087C1
Способ определения тепловой энергии и массы утечек теплоносителя в закрытых водяных системах теплоснабжения и теплосчетчик для его реализации 2019
  • Теплышев Вячеслав Юрьевич
  • Варгин Александр Александрович
  • Абдулкеримов Абдулжелил Махмудович
RU2729177C1
ТЕПЛОСЧЕТЧИК И СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ТЕПЛОНОСИТЕЛЯ В ОТКРЫТЫХ ВОДЯНЫХ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2006
  • Теплышев Вячеслав Юрьевич
  • Бурдунин Михаил Николаевич
  • Варгин Александр Александрович
RU2300086C1
ТЕПЛОСЧЕТЧИК-РАСХОДОМЕР 1996
  • Баталов С.С.
  • Черепанов В.Я.
RU2124188C1
СПОСОБ РАБОТЫ УСТРОЙСТВА ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА СРЕДЫ МАГНИТОИНДУКЦИОННОГО РАСХОДОМЕРА (ВАРИАНТЫ) И МАГНИТОИНДУКЦИОННЫЙ РАСХОДОМЕР 2009
  • Кадров Александр Васильевич
RU2410646C2

Реферат патента 2004 года СПОСОБ КОМПЕНСАЦИИ ВЛИЯНИЯ УРОВНЯ ТЕМПЕРАТУРЫ ЖИДКОСТИ НА ВХОДЕ ИЗМЕРИТЕЛЬНОГО КАНАЛА ТЕПЛОВОГО РАСХОДОМЕРА С ДАТЧИКАМИ ТЕПЛОВОГО ПОТОКА ОТ НАРУЖНОЙ ПОВЕРХНОСТИ ИЗМЕРИТЕЛЬНОГО КАНАЛА НА РЕЗУЛЬТАТ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОСТИ

Встречно ЭДС датчиков теплового потока (ДТП) включают ЭДС датчика разности температуры t1 жидкости на входе измерительного канала и температуры tн в точках теплового контакта окружающей канал среды или радиаторов с наружной поверхностью датчиков теплового потока. Расход определяют по сигналам ДТП, термопарных датчика разности температур (t1-tн) и датчика разности Δt температур t1 и t2, где t2 - температура жидкости на выходе измерительного канала. Изобретение позволяет расширить диапазон измерений тепловых расходомеров в сторону значений, близких к нулевым. 1 ил.

Формула изобретения RU 2 232 379 C2

Способ компенсации влияния уровня температуры жидкости на входе в измерительный канал теплового расходомера с датчиками теплового потока Qизм от наружной поверхности измерительного канала на результат измерения расхода жидкости по величинам Qизм и Δt=t1-t2, где t1 и t2 - температура жидкости соответственно на входе и выходе измерительного канала, отличающийся тем, что встречно ЭДС датчиков теплового потока включают ЭДС датчика разности температуры t1 и температуры tн в точках теплового контакта окружающей канал среды или радиаторов с наружной поверхностью датчиков теплового потока.

Документы, цитированные в отчете о поиске Патент 2004 года RU2232379C2

ТЕПЛОСЧЕТЧИК-РАСХОДОМЕР 1998
  • Баталов С.С.
  • Черепанов В.Я.
RU2152599C1
ТЕПЛОСЧЕТЧИК-РАСХОДОМЕР 1996
  • Баталов С.С.
  • Черепанов В.Я.
RU2124188C1
DE 3303769 А1, 29.09.1983
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ТЕПЛОНОСИТЕЛЯ 1995
  • Печенегов Ю.Я.
  • Печенегова О.Ю.
RU2082106C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА И ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ РАСХОДА 1995
  • Пухов В.В.
  • Юдицкий В.Д.
  • Синявский В.В.
RU2125242C1
КОРОТКОВ П.А
и др
Тепловые расходомеры
- Л.: Машиностроение, 1969, с.105, 106, 137, 149, 151 и 152.

RU 2 232 379 C2

Авторы

Баталов С.С.

Даты

2004-07-10Публикация

2002-08-05Подача