Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода и других газов.
Известен датчик (детектор) по теплопроводности, действие которого основано на различии между теплопроводностью паров вещества и газоносителя [1]. Однако чувствительность такого датчика (детектора) ограничивается на вещества с теплопроводностью, близкой к теплопроводности газа-носителя. Например, при использовании этого датчика для анализа кислорода точность определения невысока.
Известен также датчик [2], позволяющий определять содержание кислорода с большей чувствительностью, однако он сложен по конструкции: включает селективную мембрану с необходимым для прохождения кислорода размером пор, полость с иммобилизованным флуоресцирующим красителем и устройство для фиксирования степени гашения красителя, которая пропорциональна парциальному давлению кислорода.
Ближайшим техническим решением к изобретению является датчик влажности газов, состоящий из поликристаллической пленки селенида цинка, легированного арсенидом галлия, с нанесенными на ее поверхность металлическими электродами [3].
Недостатком этого известного устройства является его низкая чувствительность к микропримесям кислорода и при этом трудоемкость изготовления, предусматривающего легирование селенида цинка.
Задачей изобретения является повышение чувствительности и технологичности изготовления датчика, расширение его функциональных возможностей, в частности обеспечение возможности его применения для анализа кислорода.
Поставленная задача решена за счет того, что в известном газовом датчике, содержащем полупроводниковое основание с нанесенными на его поверхность металлическими электродами, основание выполнено из монокристаллической пластины арсенида индия.
Повышение чувствительности заявляемого датчика по сравнению с известным датчиком [3], принцип его работы демонстрируются чертежами, где на фиг.1 представлена конструкция заявляемого датчика, на фиг.2 - график температурной зависимости изменения электропроводности (Δσ) под влиянием адсорбированного кислорода (рo2=0,5 Па) и на фиг.3 - градуировочная кривая - зависимость изменения электропроводности (по сравнению с вакуумом) от давления кислорода при комнатной температуре. Последняя наглядно демонстрирует его чувствительность.
Датчик состоит из монокристаллической пластины арсенида индия 1 с нанесенными на его поверхность металлическими электродами 2.
Принцип работы такого датчика основан на связи между адсорбционно-десорбционными процессами, протекающими на полупроводниковой пластине, и вызванным ими изменением электропроводности. Работа датчика осуществляется следующим образом. Датчик помещают в исследуемую среду. При адсорбции кислорода, сопровождающейся образованием ионов и ион-радикалов (О
По величине ее изменения с помощью градуировочных кривых можно определить содержание кислорода в исследуемой среде.
Из анализа приведенной на фиг. 3 типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость Δσ от содержания кислорода (Рo2), следует: заявляемый датчик при существенном упрощении конструкции позволяет определять содержание кислорода с чувствительностью, в несколько раз превышающую чувствительность известных датчиков [2, 3].
К достоинствам заявляемого прибора следует также отнести его очень малые размеры (не более 3 мм3) и невысокую стоимость.
Источники информации
1. Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высшая школа, 1987.
2. Будников Г.К. Что такое химические сенсоры //Соросовский образовательный журнал. 1998, №3, с.72-76.
3. Патент №2161794, М.кл. G 01 N 27/12, 25/56.
название | год | авторы | номер документа |
---|---|---|---|
ГАЗОВЫЙ ДАТЧИК | 2002 |
|
RU2235315C2 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОАНАЛИЗАТОР | 2011 |
|
RU2469300C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОАНАЛИЗАТОР | 2007 |
|
RU2350936C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОАНАЛИЗАТОР | 2009 |
|
RU2398219C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ ДАТЧИК МИКРОПРИМЕСЕЙ АММИАКА | 2015 |
|
RU2607733C1 |
НАНОПОЛУПРОВОДНИКОВЫЙ ГАЗОАНАЛИЗАТОР | 2010 |
|
RU2423688C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ ДАТЧИК | 2003 |
|
RU2241982C2 |
ГАЗОВЫЙ ДАТЧИК | 2011 |
|
RU2469301C1 |
ГАЗОАНАЛИЗАТОР | 2011 |
|
RU2462704C1 |
ПОЛУПРОВОДНИКОВЫЙ АНАЛИЗАТОР ДИОКСИДА АЗОТА | 2014 |
|
RU2561019C1 |
Использование: изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания кислорода. Сущность: газовый датчик содержит полупроводниковое основание с нанесенными на его поверхность металлическими электродами. Основание выполнено из монокристаллической пластины арсенида индия. Технический результат - изготовление датчика для измерения содержания кислорода, обладающего повышенной чувствительностью и технологичностью изготовления. 3 ил.
Полупроводниковый газовый датчик, содержащий полупроводниковое основание с нанесенными на его поверхность металлическими электродами, отличающийся тем, что основание выполнено в виде монокристаллической пластины арсенида индия.
ГАЗОВЫЙ ДАТЧИК | 2000 |
|
RU2178558C1 |
ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ ДАТЧИК | 1999 |
|
RU2178559C2 |
Датчик влажности газов | 1985 |
|
SU1234763A1 |
Датчик влажности газов | 1991 |
|
SU1798672A1 |
Устройство для управления процессом термовлажностной обработки изделий | 1986 |
|
SU1416315A1 |
Исполнительный орган проходческого комбайна | 1986 |
|
SU1463911A2 |
Авторы
Даты
2004-08-27—Публикация
2003-06-05—Подача