Область техники, к которой относится изобретение
Настоящее изобретение относится к небольшой плавильной печи с ионным разложением, способной сжигать и плавить отходы, такие как металлы, а также мусор типа бытовых отходов, макулатуры, пластика, жидких отходов и отработавших масел.
Уровень техники
Мусоросжигательные печи, предназначенные для переработки намеченных к сжиганию объектов, таких как мусор и полученная при сжигании зола, путем их плавления при высокой температуре, достигающей 1000°С и более, бывают различных типов, включая печи поверхностного типа, со спиральным потоком, со слоем кокса, дуговые, плазменные, электрического сопротивления, с индукционным нагревом. Во всех них температура плавления составляет приблизительно от 1000°С до 1500°С.
Мусоросжигатель, способный осуществлять сжигание при более высоких температурах, описан в патенте Японии 3034461В, подготовленном и заявленном ранее автором настоящего изобретения. В описанном мусоросжигателе после начала работы генератора ионного пламени (ионной горелки), размещенного в основном корпусе мусоросжигателя, происходит сжигание керосина при температуре, достигающей приблизительно 1800°С, с целью генерирования катионного пламени; затем после достижения температуры выше 1800°С сжигают маслосодержащий металлический порошок с целью генерирования катионного пламени; затем после достижения температуры выше 2500°С сжигают также воду для генерирования мощного катионного пламени с температурой, превышающей 4000°С. Это катионное пламя вводят (инжектируют) в мусоросжигатель таким образом, чтобы оно было захвачено в форме кольца, а температура в мусоросжигателе поддерживается на уровне приблизительно от 4000 до 4500°С. Когда при этих условиях в загрузочный бункер для отходов загружен объект, предназначенный для сжигания, и объект, предназначенный для сжигания, падает вниз в корпус мусоросжигателя, этот объект подвергается внутри корпуса мусоросжигателя воздействию катионного пламени и микроволнового излучения, а также их тепловой энергии с тем, чтобы за короткое время разложиться и расплавиться до того, как он скопится в резервуаре для расплава в форме высокотемпературного расплава.
Преимущество описанного выше мусоросжигателя заключается в быстроте переработки объекта, предназначенного для сжигания, обеспечивая таким образом высокую производительность. Хотя при этом не отмечается никаких особых недостатков, применение данного мусоросжигателя связано с некоторыми проблемами. Она довольно велика, ее трудно перемещать и трудно с ней обращаться.
Кроме описанного выше, существует мусоросжигатель с использованием магнетрона. В этом случае, например, при загрузке 20 кг отходов и применении к ним микроволнового излучения частотой 2450 МГц (мощность 2,5 кВт), которое генерирует магнетрон, верхний предел температуры, достигаемый в пределах 40-60 минут, составляет от 800 до 1100°С, так что нет возможности плавить металл (железо).
Целью настоящего изобретения является создание небольшой плавильной печи с ионным разложением, которая, будучи небольшой, обладает высокой производительностью по разложению и плавлению и способна плавить и сжигать металл и мусор, а также является перемещаемой и удобной в обращении.
Сущность изобретения
Согласно настоящему изобретению, предлагается небольшая плавильная печь с ионным разложением, в которой основной корпус 1 мусоросжигателя для сжигания объекта переработки, включающего в себя по меньшей мере мусор (отходы), оборудован магнетроном 2, предназначенным для генерирования микроволнового излучения, и генератором 3 ионного пламени, предназначенным для инжектирования ионного пламени в основной корпус 1 мусоросжигателя, и в которой микроволновое излучение магнетрона 2 и ионный газ (ионное пламя) от генератора 3 ионного пламени введены в резонанс для создания состояния с высокой температурой в основном корпусе 1 мусоросжигателя, причем отходы в основном корпусе 1 мусоросжигателя разлагаются и плавятся положительными (+) и отрицательными (-) активированными ионами. Кроме того, снаружи основного корпуса 1 мусоросжигателя размещен токамак 4, и заряженные частицы (радиация) и электромагнитное излучение в основном корпусе 1 мусоросжигателя отражаются токамаком 4 и собираются в центре основного корпуса 1 мусоросжигателя с целью повышения концентрации ионов и повышения концентрации плазмы, что ведет к повышению эффективности разложения. Кроме того, загрузочное отверстие 5 в верхней части основного корпуса 1 мусоросжигателя может открываться и закрываться крышкой 6, которую можно открывать и закрывать электрическим открывающим и закрывающим устройством 7. В обоих случаях температура в основном корпусе 1 мусоросжигателя поддерживается на уровне от 1800 до 2000°С.
Согласно настоящему изобретению, предлагается небольшая плавильная печь с ионным разложением, которая включает в себя небольшую плавильную печь 8 с ионным разложением в сочетании с охлаждающим сосудом 9 и сосудом 10 для переработки отходящих газов, в которой основной корпус 1 мусоросжигателя небольшой плавильной печи 8 с ионным разложением, охлаждающий сосуд 9 и сосуд 10 для переработки отходящих газов последовательно соединены в указанном порядке, и в которой шлак из основного корпуса 1 мусоросжигателя охлаждается с помощью охлаждающего сосуда 9, а отходящие газы, образующиеся в это время, поступают в сосуд 10 для переработки отходящих газов, где происходит поглощение (абсорбция) и удаление содержащихся в отходящих газах токсических веществ с помощью поглощающего (абсорбирующего) отходящие газы материала 11, помещенного в сосуд 10 для переработки отходящих газов. Кроме того, основной корпус 1 мусоросжигателя и сосуд 10 для переработки отходящих газов размещены в одном кожухе 14, и сосуд 10 для переработки отходящих газов оборудован воздуходувкой 12 для вдувания наружного воздуха и вытяжным вентилятором 13. Кроме того, в печной стенке 20 основного корпуса 1 мусоросжигателя примешан кварц или добавка с акцепторным уровнем, либо оба вместе.
Краткое описание чертежей
На фиг.1 показано трехмерное изображение приведенной в качестве примера небольшой плавильной печи с ионным разложением, являющейся предметом настоящего изобретения;
на фиг.2 показано изображение в продольном разрезе небольшой плавильной печи с ионным разложением, изображенной на фиг.1;
на фиг.3 показано изображение в поперечном разрезе небольшой плавильной печи с ионным разложением, изображенной на фиг.1;
на фиг.4 показано изображение в поперечном разрезе основного корпуса мусоросжигателя в небольшой плавильной печи с ионным разложением, изображенной на фиг.1;
на фиг.5 показана поясняющая схема, демонстрирующая токамак в небольшой плавильной печи с ионным разложением, изображенной на фиг.1;
на фиг.6А показана схема, иллюстрирующая эффект Рамана в основном корпусе мусоросжигателя небольшой плавильной печи с ионным разложением, являющейся предметом настоящего изобретения, а на фиг.6В показана схема, иллюстрирующая пьезоэлектрический эффект основного корпуса мусоросжигателя;
на фиг.7А показан продольный разрез ионной горелки в небольшой плавильной печи с ионным разложением, являющейся предметом настоящего изобретения, а на фиг.7В показано ее изображение спереди;
на фиг.8 показана поясняющая схема, демонстрирующая небольшую плавильную печь с ионным разложением, являющуюся предметом настоящего изобретения;
на фиг.9 показано поясняющее изображение в плане, демонстрирующее другой пример небольшой плавильной печи с ионным разложением, являющейся предметом настоящего изобретения;
на фиг.10 показано поясняющее изображение сбоку другого примера небольшой плавильной печи с ионным разложением, являющейся предметом настоящего изобретения.
Наилучшие варианты реализации изобретения
(Первый вариант реализации)
Далее будет описана небольшая плавильная печь с ионным разложением со ссылками на фиг.1-8. На этих чертежах небольшая плавильная печь 8 с ионным разложением включает в себя основной корпус 1 мусоросжигателя с периферийной стенкой, снабженной четырьмя магнетронами 2. На крышке 6, размещенной на загрузочном отверстии 5 в верхней части основного корпуса 1 мусоросжигателя установлен генератор 3 ионного пламени (ионная горелка), направленный вниз (т.е. с выпускным отверстием для пламени, направленным внутрь основного корпуса 1 мусоросжигателя), а на основном корпусе 1 мусоросжигателя размещены шесть токамаков. Как показано на фиг.3, четыре магнетрона 2 установлены в таких местах периферийной стенки основного корпуса 1 мусоросжигателя, которые не располагаются друг против друга, и четыре токамака из шести токамаков 4 размещены по внешней периферии основного корпуса 1 мусоросжигателя, как показано на фиг.3, а два токамака размещены соответственно в верхней и нижней частях основного корпуса 1 мусоросжигателя, как показано на фиг.5.
Печная стенка 20 основного корпуса 1 мусоросжигателя выполнена из огнеупорного материала, например литого огнеупора, полученного путем смешивания огнеупорного заполнителя с гидравлическим материалом (т.е. твердеющим в воде), таким как глиноземистый цемент, или с фосфорной кислотой, кварцем, добавкой с акцепторным уровнем и т.п. Как показано на фиг.2 и 4, она имеет форму цилиндра. Как показано на фиг.4 и 6А, внешняя сторона стенки покрыта отражательным материалом 21, состоящим из алюминия, нержавеющей стали и тому подобного, и внешняя сторона последнего покрыта изолятором 22, внешняя сторона которого закрыта кожухом 23, выполненным из железного листа или какого-либо другого металлического материала. Термин “акцепторный уровень” относится к быстрому электронному переходу при формировании оксидного полупроводника, причем все вещество имеет отрицательный заряд. Когда кварц и добавку с акцепторным уровнем добавляют к печной стенке 20 основного корпуса 1 мусоросжигателя, существует возможность получить пьезоэлектрический эффект в кварце (колебание, вызванное приложением электрического импульса к кристаллу кварца: фиг.6В) и эффект Рамана, связанный с вторичной электронной эмиссией добавки с акцепторным уровнем (отражение излучения, частота которого отличается от частоты падающего излучения при соударении: фиг.6А).
Основной корпус 1 мусоросжигателя выполнен главным образом из глинозема (оксида алюминия) и кварца с добавленной к ним добавкой с акцепторным уровнем. Размеры основного корпуса 1 мусоросжигателя могут быть выбраны произвольно; когда он выполнен, например, в форме цилиндра диаметром 1,2 м и высотой приблизительно 1,5 м, перемещение и обращение с мусоросжигателем облегчаются. Как показано на фиг.2, основной корпус 1 мусоросжигателя содержит в своем днище отверстие 24 для выпуска шлака, в своей верхней части он содержит загрузочное отверстие 5, на котором установлена крышка 6. Как показано на фиг.8, крышка автоматически открывается и закрывается с помощью подъемника, например, электрического открывающего и закрывающего устройства 7, состоящего из ворота или т.п. Ионная горелка 3 установлена на крышке 6 таким образом, чтобы быть направленной вниз (т.е. ее сопло для инжекции пламени направлено в основной корпус 1 мусоросжигателя).
В качестве топлива в ионной горелке 3 применяется газообразный пропан, теплотворная способность которого составляет приблизительно 30 ккал. Как показано на фиг.7А и 7В, ионная горелка 3 содержит цилиндрическую деталь 30, генерирующую импульсное магнитное поле, кожух 31, выступающий из нее и выполненный как тонкий и узкий цилиндр меньшего диаметра, и распылитель 32 топлива, размещенный в центре внутренней полости кожуха 31. Кожух 31 выполнен из ферромагнитного металла (такого как железо, никель или кобальт), и на его внутренней периферийной поверхности размещен соприкасающийся с пламенем ионизирующий материал 33.
Соприкасающийся с пламенем ионизирующий материал 33 получают путем кристаллизации в окислительной атмосфере состава, полученного путем комбинирования светочувствительного вещества с магнитным материалом. Примерами светочувствительного вещества могут служить такие элементы как селен, кадмий, титан, литий, барий и таллий, а также их соединения, такие как оксиды, сульфиды и галогениды. Магнитный материал состоит из ферромагнетика (такого как железо, никель, кобальт или их соединения), парамагнетика (такого как марганец, алюминий, олово или их соединения), или диамагнетика (такого как висмут, фосфор, медь, кальций или их соединения).
По внешней периферии кожуха 31 установлена электромагнитная катушка 34 с железным сердечником. В электромагнитной катушке 34 обмотка из медного провода помещена на железный сердечник, причем обмотка из медного провода соединена с источником питания. Когда из источника питания подают импульсный ток, на внутренней стороне обмотки генерируется мощное высокочастотное магнитное поле, сильно намагничивая кожух 31, выполненный из металлического ферромагнетика. Высокочастотное магнитное поле обладает магнитной индукцией, достигающей, например, 10000 или более, и частотой приблизительно от 20 до 50 МГц. С внутренней стороны кожуха 31, намагниченного электромагнитной катушкой 34, генерируется высокочастотное магнитное поле, которое активизирует соприкасающийся с пламенем ионизирующий материал 33. Пламя углеводорода, которое входит в контакт с соприкасающимся с пламенем ионизирующим материалом 33, превращается в ионное пламя, которое содержит большое количество катионов (ионы углерода, водорода, железа и т.п.) и анионов (ионы кислорода).
В распылителе 32 топлива (фиг.7А и 7В) в центре сопла 35, изготовленного из немагнитного материала (латуни, нержавеющей стали и т.п.), выполнено отверстие 36 для инжектирования (впрыскивания) топлива (с внутренним диаметром 3 мм), через которое инжектируют или впрыскивают топливо (сжиженный нефтяной газ, т.е. смесь пропана и бутана), а по наружной периферии сопла выполнено восемь отверстий 37 для вдувания воздуха (с внутренним диаметром от 1 до 2 мм), через которые вдувают воздух под высоким давлением. В этом распылителе 32 топлива топливо, инжектируемое через отверстие 36 для инжектирования топлива, эффективно распыляется (диспергируется) воздухом под высоким давлением, вдуваемым через отверстия 37 для вдувания воздуха и поступающим от турбины с задней стороны. Количество, давление, скорость и иные характеристики воздуха, поступающего от турбины, можно произвольно регулировать с помощью управляющего устройства (не показано). Сопло 35 прикреплено к кожуху 31 с помощью опорного элемента (не показан).
Магнетроны 2 генерируют микроволновое излучение (т.е. СВЧ-излучение). Частота и мощность генерируемого микроволнового излучения могут быть выбраны произвольно; так, например, подходят частота и мощность, равные приблизительно 2450 МГц и 2,5 кВт соответственно.
Токамаки 4 являются электромагнитными отражателями. Они приспособлены для отражения –ионов и +ионов (т.е. отрицательно и положительно заряженных частиц) и для изменения направления электромагнитного излучения. Как показано на фиг.2 и 5, обмотки (обмотки токамака) 39 обмотаны вокруг имеющих кольцевую (тороидальную) форму магнитных сердечников 38 с целью получения электромагнитов, и в обмотки 39 подается импульсный ток. Токамаки 4 защищают периферию основного корпуса 1 мусоросжигателя, отражая заряженные частицы (радиацию) в основной корпус 1 мусоросжигателя и изменяют направление электромагнитного излучения. На фиг.5 четыре токамака 4 размещены по периферии основного корпуса 1 мусоросжигателя, один в днище и один сверху (на крышке 6), так что заряженные частицы (радиация) и электромагнитное излучение в основном корпусе 1 мусоросжигателя собираются в центре основного корпуса 1 мусоросжигателя, что при высокой температуре способствует повышению концентрации ионов и повышению концентрации плазмы, позволяя добиться таким образом улучшения эффективности разложения объекта, предназначенного для сжигания в основном корпусе 1 мусоросжигателя. Кроме того, несмотря на уменьшение размеров, остается высокой способность к сохранению тепла, так что существует возможность эффективного разложения и плавления отходов. Импульсный ток, протекающий по обмоткам 39 токамаков 4, превращается в энергию для индуцирования пьезоэлектрического эффекта в кварце, применяемом в печной стенке основного корпуса 1 мусоросжигателя.
Как показано на фиг.1 и 2, основной корпус 1 мусоросжигателя, магнетроны 2 и токамаки 4 закрыты непроницаемой для магнитного поля цилиндрической защитой 41, установленной на дисковидной плите 40 основания. В плите 40 основания предусмотрена открывающаяся и закрывающаяся крышка 42, предназначенная для того, чтобы открывать и закрывать отверстие 24 для выпуска шлака в основном корпусе 1 мусоросжигателя. На нижней поверхности плиты 40 основания установлены самоориентирующиеся колеса 43 для перемещения, а на внешней стороне непроницаемой для магнитного поля защиты 41 установлена ручка 44. Вытяжной цилиндр 45 в виде узкой трубы малого диаметра отходит вверх от внутренней полости непроницаемой для магнитного поля защиты 41. Через вытяжной цилиндр 45 происходит выброс наружу воздуха из пространства 46 между непроницаемой для магнитного поля защитой 41 и основным корпусом 1 мусоросжигателя, т.е. обладающего высокой температурой воздуха, нагретого тепловым излучением от основного корпуса 1 мусоросжигателя.
(Вариант реализации 2)
Небольшая плавильная печь с ионным разложением, выполненная согласно второму варианту реализации настоящего изобретения, будет описана со ссылками на фиг.9 и 10. В этом варианте реализации небольшую плавильную печь 8 с ионным разложением по варианту реализации 1 комбинируют с охлаждающим сосудом 9 и сосудом 10 для переработки отходящих газов и размещают в общем (едином) кожухе 14. На фиг.9 и 10 показано, что в кожухе 14 содержится также воздушный компрессор (компрессор) 50 и источник 51 питания для магнетронов наряду с охлаждающими сосудами 9. Внутренние полости небольшой плавильной печи 8 с ионным разложением охлаждающих сосудов 9 и сосуда 10 для переработки отходящих газов сообщаются между собой через соединительный канал (трубу) 52, внутренняя поверхность которого (которой) покрыта огнеупорным материалом, так что отходящий газ из основного корпуса 1 мусоросжигателя небольшой плавильной печи 8 с ионным разложением проходит через охлаждающие сосуды 9 для того, чтобы поступить в сосуд 10 для переработки отходящих газов. Ниже сосуда 10 для переработки отходящих газов установлена воздуходувка 12 для подачи наружного воздуха, а в своде сосуда 10 для переработки отходящих газов установлен вытяжной вентилятор 13. Воздуходувка 12 для подачи наружного воздуха служит для охлаждения отходящего воздуха, поступающего в сосуд 10 для переработки отходящих газов из основного корпуса 1 мусоросжигателя, и для удаления (вытеснения) наружу отходящего воздуха, находящегося в сосуде 10 для переработки отходящих газов. Благодаря такому вытеснению облегчается перемещение воздуха в сосуде 10 для переработки отходящих газов, и отходящий газ из основного корпуса 1 мусоросжигателя легко выбрасывается наружу через охлаждающие сосуды 9 и сосуд 10 для переработки отходящих газов. В этом случае на поддоне 53 из пористого материала, установленном рядом с днищем сосуда 10 для переработки отходящих газов, размещают материал 11, абсорбирующий отходящий газ, где указанный материал включает в себя древесный уголь, формованный цеолит и т.п., так что содержащиеся в отходящем газе токсичные вещества, такие как хлор, углерод и частицы, абсорбируются материалом 11, абсорбирующим отходящий газ, а не выбрасываются наружу.
Компрессор 50 в кожухе 14 служит для того, чтобы направлять сжатый воздух в отверстия 37 для вдувания воздуха, показанные на фиг.7А и 7В. Компрессор 50 может иметь произвольную мощность; например, его мощность может равняться приблизительно 1,5 кВт. Существует также возможность установки компрессора 50 за пределами кожуха 14.
(Пример функционирования)
Далее будет описан пример функционирования небольшой плавильной печи с ионным разложением, являющейся предметом настоящего изобретения, для сжигания 20 кг отходов.
(1) Крышку 6 основного корпуса 1 мусоросжигателя открывают с помощью электрического открывающего и закрывающего устройства 7 для того, чтобы открыть загрузочное отверстие 5, и в основной корпус 1 мусоросжигателя через загрузочное отверстие 5 загружают 20 кг отходов, после чего крышку 6 закрывают с тем, чтобы плотно закрыть загрузочное отверстие 5.
(2) Затем включают магнетроны 2, и генерируемое ими микроволновое излучение направляют на отходы. В это время поджигают ионную горелку 3, в которой в качестве топлива используется пропан, с целью генерирования ионного пламени. Мощность и частота микроволнового излучения, генерируемого магнетронами 2, составляют, например, приблизительно 2,5 кВт и 2450 МГц соответственно.
(3) Микроволновое излучение, генерируемое магнетронами 2, и ионный газ, генерируемый ионной горелкой 3, входят в резонанс для того, чтобы воздействовать (зажигать: ионизировать) на отходы, нагревая вещество изнутри и отбирая у него электроны при продолжении разложения с целью повышения температуры внутри основного корпуса 1 мусоросжигателя. Отходы в основном корпусе 1 мусоросжигателя разлагаются и плавятся до золы активированными положительными (+) и отрицательными (-) ионами, и шлак в форме золы плавится. В это время заряженные частицы (радиация) и электромагнитное излучение в основном корпусе 1 мусоросжигателя отражаются токамаками 4, размещенными в основном корпусе 1 мусоросжигателя и собираются в центре внутренней полости основного корпуса 1 мусоросжигателя с целью повышения концентрации ионов и повышения концентрации плазмы, что способствует повышению эффективности разложения. В случае обычных отходов они плавятся до жидкого состояния при температуре 1500°С. Эту жидкость направляют в охлаждающий сосуд 9 (фиг.9) за пределами основного корпуса 1 мусоросжигателя через соединительный канал (трубу), внутренняя поверхность которого покрыта огнеупорным материалом, а охлаждающий сосуд 9 охлаждают водой для превращения жидких отходов в шлак. В ходе этого процесса происходит выделение отходящих газов.
(4) Отходящие газы направляют в сосуд 10 для переработки отходящих газов, и материал 11, абсорбирующий отходящий газ, абсорбирует токсичные вещества, такие как хлор (токсичное вещество) и углерод, перед тем как выпустить отходящие газы в атмосферу с помощью вытяжного вентилятора 13, показанного на фиг.10. Выпущенные отходящие газы практически не содержат токсичных веществ; в случае, если они все же содержатся, эти вещества находятся в форме элементов и поэтому безвредны.
В указанном примере функционирования отходы покраснели и побелели без выделения дыма в течение нескольких секунд после приложения микроволнового излучения, и были разложены и расплавлены в течение 15-20 минут. Неорганические вещества были расплавлены и выпущены за пределы основного корпуса 1 мусоросжигателя (за пределы печи). Это связано с ударением направленного микроволнового излучения об основной корпус 1 мусоросжигателя, выполненный из огнеупорного материала, и отражением после усиления до частоты, превышающей частоту падающего излучения, за счет пьезоэлектрического эффекта и эффекта Рамана печной стенки основного корпуса 1. Это произошло благодаря повышению частоты падающего излучения в два раза или более, что может быть подтверждено сокращением длительности плавления. Кроме того, благодаря ионной горелке 3 температура повышается до 1600-2000°С, так что возможно плавление металлов до жидкого состояния; после охлаждения расплавленные металлы превращаются в шлак.
Промышленная применимость
Плавильная печь с ионным разложением, являющаяся предметом настоящего изобретения, обладает следующими преимуществами:
(1) В связи с тем, что печь работает на основе диэлектрического термического разложения (ионного разложения) с использованием микроволнового излучения, скорость разложения высока, и при этом не происходит никакой излишней траты топлива, что является преимуществом с экономической точки зрения.
2) Поскольку разложение и плавление осуществляются в ходе процесса, в котором активированные ионы захватывают электроны из предназначенного для сжигания объекта, нет выделения дыма.
(3) В основном корпусе мусоросжигателя примешан (добавлен) кварц или добавка с акцепторным уровнем, либо оба из них вместе. При подмешивании кварца достигается спектральный (рассеивающий) эффект Рамана, связанный с пьезоэлектрическим эффектом в кварце после приложения микроволнового излучения к основному корпусу мусоросжигателя, благодаря чему достигается повышение эффективности плавления и разложения, что позволяет плавить отходы, такие как металлы, а также бытовой мусор или т.п. При подмешивании добавки с акцепторным уровнем возможно получение эффекта Рамана благодаря вторичной электронной эмиссии, обеспечивая таким образом повышение эффективности плавления и разложения.
(4) Поскольку в основном корпусе мусоросжигателя размещены токамаки, заряженные частицы (радиация) и электромагнитное излучение в основном корпусе мусоросжигателя отражаются токамаками и собираются в центре основного корпуса мусоросжигателя, благодаря чему возрастает концентрация ионов и повышается концентрация плазмы, и таким образом повышается эффективность разложения.
(5) Поскольку загрузочное отверстие в верхней части основного корпуса мусоросжигателя может открываться и закрываться крышкой, а крышка может открываться и закрываться электрическим открывающим и закрывающим устройством, это облегчает выполнение операции открывания и закрывания.
(6) Поскольку температура в основном корпусе мусоросжигателя поддерживается на уровне от 1800 до 2000оС, возможно плавление и разложение почти любого типа отходов в течение любого времени.
(7) Поскольку печь невелика, ее можно передвигать.
(8) Благодаря небольшим размерам и простоте конструкции печи облегчается управление ею, и ею может управлять любой человек.
(9) Отходящие газы, которые могли бы загрязнять окружающую среду в случае выброса в атмосферу при высокой температуре, выбрасывают в атмосферу после охлаждения в охлаждающем сосуде, так что не происходит никакого загрязнения окружающей среды.
Изобретение относится к небольшой плавильной печи с ионным разложением, способной сжигать и плавить отходы, такие как металлы, а также мусор типа бытовых отходов, макулатуры, пластика, жидких отходов и отработавших масел. Основной корпус мусоросжигателя снабжен магнетроном для создания микроволнового излучения и ионной горелкой, и микроволновое излучение от магнетрона, и ионное пламя из ионной горелки вводятся в резонанс с целью получения в основном корпусе мусоросжигателя состояния с высокой температурой, за счет чего происходит разложение и плавление отходов в основном корпусе мусоросжигателя с помощью положительных (+) и отрицательных (-) активированных ионов. С наружной стороны основного корпуса мусоросжигателя помещен также токамак, так что заряженные частицы (радиация) и микроволновое излучение в основном корпусе мусоросжигателя отражаются токамаком и собираются в центре основного корпуса мусоросжигателя с целью возрастания концентрации ионов и повышения концентрации плазмы, чтобы таким образом повысить эффективность указанного разложения. В печной стенке основного корпуса мусоросжигателя примешан кварц или добавка с акцепторным уровнем, либо оба вместе. Технический результат: повышенная производительности печи, транспортабельность и удобство в обращении. 2н. и 12 з.п. ф-лы,12 ил.
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Авторы
Даты
2004-09-10—Публикация
2001-04-02—Подача