СПОСОБ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ С ПРОИЗВОДСТВОМ ТЕПЛОВОЙ ЭНЕРГИИ И СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И МУСОРОСЖИГАТЕЛЬНЫЙ ЗАВОД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2013 года по МПК F23G5/00 

Описание патента на изобретение RU2502017C1

Изобретение относится к области сжигания отходов или низкосортных топлив. Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод (МСЗ) для его осуществления предназначены для переработки и утилизации твердых бытовых отходов, переработки и обезвреживания промышленного и бытового мусора с выработкой тепла, например, для подогрева воды и подачи ее в централизованную систему отопления или для обогрева теплиц и получения товарной продукции в виде строительных материалов.

Актуальность проблемы состоит в том, что одной из множества "болевых" точек современной экологии является проблема городских свалок бытового и промышленного мусора. Практически все города (большие и маленькие) в России и за рубежом окружены бесчисленным количеством официальных и неофициальных свалок. Свалки занимают десятки и сотни гектаров земли, чадят, дымят, загрязняют землю, воздух, воду. На свалках присутствуют и образуются ядовитые и вредные вещества - бензопирен, меркаптан, диоксин и др. В большинстве случаев эти ядовитые вещества возникают из сравнительно нейтральных отходов в результате самопроизвольного, неорганизованного горения и разложения мусора (последние исследования показывают, что диоксины могут образовываться и без процесса горения - под воздействием солнечной радиации). Поэтому во всем мире сегодня интенсивно разрабатываются пути переработки и обезвреживания промышленного и бытового мусора.

Существуют различные технологии переработки ТБО: био- и биохимические технологии, технологии прессования, создания цивилизованных полигонов захоронения, сортировки и последующей переработки.

Но все же в ряде стран до 80% мусора подвергается обезвреживанию термическим (огневым) методом. Сегодня этот способ является наиболее эффективным и универсальным.

Суть огневого метода обезвреживания отходов состоит в организации процесса горения таким образом, чтобы все сложные и вредные химические соединения разложились до простейших соединений, безвредных для человека и природы.

Твердые бытовые отходы (ТБО), составляющие основную массу городских отходов, исходно имеют 3 полезных качества: 1) содержат некоторые изделия и материалы, которые могут быть использованы (утилизированы) после сортировки и отбора без существенной переработки; 2) содержат вещества и материалы, которые могут быть утилизированы только после отбора и переработки; 3) имеют теплотворную способность, утилизация которой (теплоутилизация) фактически не требует сортировки и переработки за исключением изъятия крупногабаритных отходов. Использование теплотворной способности ТБО (и их остатков после любой утилизации материальных компонент) - это наиболее оптимальная технология утилизации полезных свойств ТБО.

Известна установка для сжигания мусора с утилизацией тепла отходящих газов, включающая бункер для мусора, печь для сжигания мусора с золоудалителем, воздухоподающим устройством для подогрева воды отходящими газами, блок очистки отходящих газов и систему электроснабжения (Авторское свидетельство СССР N 1716257, кл. F23G /00, 1992).

Недостатком установки является сложность термической переработки отходов, необходимость подачи в реактор кислорода из внешних источников для обеспечения активного горения, необходимость электрического подогрева воздуха, поступающего в реактор.

Известен способ термической переработки отходов (патент РФ 95113652/03, 31.07.1995), включающий их подготовку, загрузку в печь и нагрев в ней в окислительной среде энергопреобразующими устройствами, например плазмотронами, перевод отходов в металлическую, шлаковую и газовую составляющие, которые выпускают из печи, причем отходящие газы утилизируют, например, пропуская через теплообменник, а затем их очищают и выпускают в атмосферу, отличающийся тем, что в теплообменнике отходящими газами из печи нагревают природный газ, отобранный из магистрального газотрубопровода перед редуцирующим устройством на газораспределительной станции, после чего его подают в турбодетандер, снижая давление, и направляют в магистральный газотрубопровод за редуцирующим устройством, а энергию расширяющегося нагретого природного газа преобразуют в электрическую при помощи электрогенератора, соединенного с турбодетандером, затем часть ее превращают в тепловую энергию, запитывая энергопреобразующие устройства, другую часть превращают в механическую энергию, обеспечивая работу электрооборудования, приводящего в действие механизмы, задействованные в способе, а третью часть превращают в химическую энергию при помощи воздухораспределительной установки и получают кислород и аргон, причем газообразный кислород подают в печь и окисляют отходы, а газообразный аргон направляют в энергообразующие устройства, защищая их от разрушения в окислительной среде.

Недостатки способа: необходимость в энергопреобразующем устройстве требуемой мощности и надежности, турбодетандере, который отсутствует на рынке, необходимость деления энергии на несколько частей, причем способ деления не описан в патенте.

Известен способ переработки твердых бытовых и мелкодисперсных промышленных отходов (патент РФ 2208202, МПК 7 F23G 5/00, F23G 5/32).

Способ переработки твердых бытовых и мелкодисперсных промышленных отходов включает подачу твердых бытовых отходов в печь жидкой ванны и переработку мелкодисперсных промышленных отходов методом восстановительной циклонной плавки. Образующиеся при восстановительной циклонной плавке высокотемпературные отходящие газы подают на сушку бытовых отходов, а расплав шлака - в печь жидкой ванны, где осуществляют переработку твердых бытовых отходов в кальцийсодержащем шлаковом расплаве. Крупнодисперсную и мелкодисперсную пыль газоочистки отходящих газов печи жидкой ванны обогащают окислами тяжелых металлов за счет подачи ее совместно с мелкодисперсными промышленными отходами на восстановительную циклонную плавку. Технический результат: снижение энергетических затрат и безотходное ведение комплексной переработки твердых бытовых и мелкодисперсных промышленных отходов.

Недостатки способа: нет полной переработки ТБО, нужна сушка ТБО, требуются кальцийсодержащий шлаковый расплав и окислы тяжелых металлов для восстановительной циклонной плавки.

Известен способ сжигания твердых бытовых отходов и прочих органических отходов и устройство для его осуществления (патент РФ 2249766, МПК 7 F23G 5/00).

Способ сжигания твердых бытовых и прочих органических отходов включает сжигание отходов при подаче предварительно нагретого воздуха, дожигание газообразных продуктов сжигания, последующую обработку для связывания НСl, Сl2, HF, пропускание через теплообменник-котел, газоочистку. Перед подачей в печь на сжигание отходы сепарируют, измельчают органическую часть отходов до размеров не более 100 мм, смешивают отходы с нагретым до температуры 300-400°С воздухом, подачу в циклонную печь осуществляют тангенциально с линейной скоростью не ниже 28 м/с, сжигание осуществляют при температурах 1320-1350°С, дожигание осуществляют в камере каталитического дожигания при температурах 1300-1500°С, обработку для связывания НСl, Сl2, HF ведут в камере декарбонизации известняковой муки с получением негашеной извести, перед подачей в котел обработанные продукты сжигания пропускают через воздухоподогреватель, а после котла - через систему мокрой газоочистки, причем тепловую энергию котла подают потребителям.

Недостатки способа состоят в необходимости в дополнительных затратах по измельчению отходов, нагреванию воздуха до высокой температуры, в использовании катализаторов в процессе дожигания.

Известен способ обработки твердых бытовых отходов (патент РФ 2254518, МПК 7 F23G5/24, F23G 5/027, F23G 5/16). Способ обработки твердых бытовых отходов включает загрузку ТБО и сыпучего инертного теплоносителя в вертикальную шахтную печь, инициацию процесса пиролиза путем подачи горячей пароводяной смеси, получение низконапорного пиролизного газа и его сжигание с утилизацией теплоты сгорания. К низконапорному пиролизному газу подводят дополнительную энергию путем смешения в эжекторе с потоком высоконапорного воздуха, температуру пароводяной смеси поддерживают на уровне 60-800°С, температура в зоне газификации ТБО составляет 150-2500°С, а температуру и давление газа после сгорания поддерживают на уровне, соответственно, 600-1000°С и 0,5-1,1 МПа. Технический результат: повышение кпд системы утилизации.

Недостатки способа: высокие энергозатраты для получения высокой температуры приготовления пароводяной смеси, нет утилизации остатков сгорания.

Известен способ термической переработки бытовых отходов и устройство для его осуществления (патент РФ 2293918, МПК F23G 5/00). Способ термической переработки бытовых отходов включает подготовку, загрузку в шахту, нагрев в плазменных струях в окислительной среде с циркуляцией газов в герметизированном реакционном пространстве с последующим выпуском образующихся расплавов шлака, металла и газов с очисткой и утилизацией последних, возврат части отходящих газов в реакционное пространство. Подготовленные отходы подвергают объемному сжатию, нейтрализуют выделенную жидкую фазу, а полученный твердый продукт направляют на подсушку, которую производят тепловым воздействием отходящего после утилизации газа. Подсушенный продукт периодически загружают в шахтную печь без теплового воздействия плазменных струй. После полной загрузки печи продукт уплотняют при одновременном нагреве продуктов плазменными струями, при этом в процессе уплотнения понижают исходный уровень столба продуктов в реакционном пространстве печи со скоростью, пропорциональной скорости газификации. Полученный пиролизный газ за счет давления в шахтной печи, которое создают плазмотронами, отводят из верхней части шахтной печи, перепускают через систему газоочистки, аккумулируют в ресивере и направляют на утилизацию тепловой и химической энергии. Рабочим телом плазмотронов служат очищенный сжатый в компрессоре газ, отходящий после подсушки, и вода, а оставшиеся в шахтной печи отходы уплотняют и плавят плазменной струей, после чего сливают металл и шлак из шахтной печи.

Технический результат: обеспечение высокой производительности при переработке мусора с повышенными экологическими параметрами.

Недостатки способа: использование дорогостоящей плазменной технологии, нет устройства переработки шлака и металла.

Известен способ переработки твердых бытовых и промышленных отходов (патент РФ 2383822). Способ переработки твердых отходов включает их подготовку и загрузку в шахтную печь совместно с карбонатным материалом, например известняком, а также подачу в печь топлива и воздуха на горение, удаление дымовых газов и вывод готового продукта из нижней части печи. В качестве шахтной печи используют двухшахтную печь для обжига известняка. В одну шахту печи, работающую в режиме прямотока, загружают подготовленные отходы совместно с карбонатным материалом и в верхнюю часть этой шахты подают топливо и воздух на горение. В другую шахту, работающую в режиме противотока, загружают карбонатный материал для получения извести и в нижнюю часть этой шахты подают топливо и воздух на горение. Дымовые газы из первой шахты по дымовому каналу просасывают во вторую шахту и с помощью дымососа удаляют из верхней части второй шахты.

Технический результат: повышение эффективности и экологической безопасности обезвреживания и утилизации твердых бытовых и промышленных отходов.

Недостатки: использование дополнительного карбонатного материала, не описан способ использования образующихся тепла и шлака.

Общие недостатки аналогов состоят в небольшой производительности, отсутствие полного цикла утилизации ТБО с получением товарной продукции, в низком кпд, сложности способов и устройств, в необходимости дополнительной термохимической обработки.

Наиболее близкий аналог способа экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательного завода для его осуществления описан в следующем источнике: В.М.Малахов, Г.Н.Багрянцев, Е.Н.Гришин, Б.И.Лунюшкин, С.В.Алексеенко, А.В.Попов. «Технологические решения в проекте Бердского опытного мусороперерабатывающего завода» в Сб.: «Очистка и обезвреживание дымовых газов из установок, сжигающих отходы и мусор». - Новосибирск: Институт теплофизики СО РАН, 1999, 238 стр.

В этом проекте Бердский опытный мусороперерабатывающий завод (МПЗ) предназначен для переработки и обезвреживания промышленного и бытового мусора города (или района города) с населением в 100 тыс. чел. Производительность его - не менее 40 тыс. т/год, в том числе 30 тыс. т ТБО и 10 тыс. т производственных отходов.

На МПЗ подлежат переработке все виды городских ТБО: образующиеся в жилых и общественных зданиях; отходы от уборки улиц; от санитарной обрезки деревьев и кустарников и т.д., все виды промышленных нетоксичных и токсичных отходов всех классов опасности, за исключением радиоактивных и содержащих ртуть, свинец, мышьяк, селен. Система утилизации тепла на заводе позволяет использовать наряду с высокопотенциальным теплом дымовых газов и низкопотенциальное тепло, выделяющееся при конденсации влаги, содержащейся в дымовых газах, и снимаемое системой охлаждения газоочистного и технологического оборудования.

МПЗ состоит из следующих основных блоков: бункерный блок, блок сжигания ТБО, блок дымоочистки, блок водоподготовки и утилизации тепла.

В работе МПЗ используется дополнительное высококалорийное топливо, как и в любых других технологиях сжигания отходов, так как оно нужно при розжиге мусоросжигательных котлов и печей, для нагрева стен до высокой температуры, достаточной для предотвращения вредных выбросов.

В основу производственных процессов, применяемых на МПЗ, положены прогрессивные технологии и решения:

- отходы сжигаются в наклонной вращающейся печи барабанного типа, что позволяет полностью механизировать и автоматизировать все технологические операции;

- предусматривается дожигание дымовых газов в вихревом дожигателе ВД с образованием газообразных продуктов полного окисления;

- в составе каждой технологической линии предусмотрена специальная система очистки дымовых газов по "мокрому" методу;

- в составе завода предусмотрена установка теплоутилизационного оборудования (котла-утилизатора и теплового насоса), что позволяет обеспечить собственные потребности завода в тепле и выдать тепло сторонним потребителям.

Недостаток МПЗ заключается в том, что в нем не предусмотрена система обезвреживания золы, что не позволяет считать МПЗ замкнутым безотходным производством. В исходных ТБО могут содержаться тугоплавкие, негорючие материалы, которые переходят в золу. При сжигании ТБО на МПЗ в образующейся золе содержится некоторое количество несгоревшего углерода (мехнедожог), на ней осаждаются канцерогенные вещества, диоксины и фураны. Захоранивать такую золу нельзя, а системы экологически чистой утилизации золы в проекте МПЗ не предусмотрено. Эффективным путем решения экологической проблемы является дополнение завода блоком плавления золы в плазменном реакторе с получением инертного шлака и нетоксичных газовых выбросов.

Известна плазменная плавильная установка и способ плазменного переплава золы мусоросжигательных заводов (Х.С.Пак. Исследование состава и свойств шлака при плазменном переплаве золы мусоросжигательных заводов // Теплофизика и аэромеханика, 2011, т.18, №2, с.325-334). Плавильная установка состоит из плавильной камеры, плазмотрона, источника питания плазмотрона и системы его запуска, устройств для анализа, очистки и удаления газа, образующегося в процессе плавления. Плавильная камера имеет огнеупорную подовую футеровку стен, ее конструкция допускает поворот на 180° для слива расплавленного шлака. Для плавления золы используется плазмотрон струйного типа мощностью до 70 кВт. В результате плазменного переплава золы получается свободный от диоксинов, экологически безопасный шлак.

Недостатки данной установки и способа: небольшая производительность, переработка золы дискретным методом по 500 г, отсутствие водоохлаждаемого кожуха, что не позволяет поднять производительность установки и увеличить длительность непрерывной работы, система очистки установки не позволяет достичь экологических норм по вредным выбросам, отсутствуют необходимые параметры для масштабируемости технологии.

Задачей способа экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательного завода (МСЗ) для его осуществления является экологически чистое сжигание ТБО и других горючих отходов с выработкой тепловой энергии, с минимальным воздействием на окружающую среду, с максимальным кпд, минимальными трудозатратами и максимальным использованием негорючих твердых бытовых отходов и системой утилизации золы.

Проблема решается следующим образом: мусоросжигательный завод, состоящий из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, дополняется блоком утилизации золы, который содержит реактор для плавления золы, футерованный изнутри; плазмотрон; бункер золы с механизмом ввода золы; систему слива расплава и грануляции шлака, источник электропитания, систему очистки дымовых газов, согласно изобретению, в блоке утилизации золы плавильный реактор имеет металлический водоохлаждаемый кожух, блок утилизации золы содержит воздушный компрессор и водяной насос для охлаждения электродов плазмотрона и кожуха реактора, система очистки дымовых газов блока утилизации золы содержит дожигатель, вихревой скруббер (центробежно-барботажный аппарат) с щелочным раствором, рукавный фильтр для очистки от твердых примесей и приемник зольного остатка (вторичной золы).

В способе экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов поставленная задача решается тем, что твердые бытовые отходы изначально поступают в бункерный блок, где происходит отбор крупногабаритного мусора, жидкие отходы сливаются в отдельную емкость, затем ТБО поступают в блок сжигания ТБО, дымовые газы поступают в блок водоподготовки и утилизации тепла, а затем дымовые газы поступают в блок дымоочистки, а зола из блока сжигания и блока дымоочистки поступает в блок утилизации золы, сначала в бункер золы с механизмом ввода золы, затем в плавильный реактор, футерованный изнутри и снабженный плазмотроном; расплавленная зола поступает в систему слива расплава и грануляции шлака, оборудованную источником электропитания, системой очистки дымовых газов, согласно изобретению, зола плавится в плавильном реакторе с металлическим водоохлаждаемым кожухом, при этом дымовые газы проходят через систему очистки дымовых газов блока утилизации золы, снабженную дожигателем, вихревым скруббером (центробежно-барботажным аппаратом) с щелочным раствором, рукавным фильтром для очистки от твердых примесей, а вторичная зола (зольный остаток) поступает в приемник зольного остатка.

МПЗ с блоком утилизации золы содержит бункерный блок, блок сжигания ТБО, блок дымоочистки, блок водоподготовки и утилизации тепла, блок утилизации золы.

На чертеже представлена блок-схема блока утилизации золы. Блок утилизации золы содержит 1 - источник электропитания, 2 - воздушный компрессор, 3 - плазмотрон, 4 - водяной насос, 5 - бункер золы с системой подачи золы, 6 - плавильный реактор, 7 - систему слива расплава и грануляции шлака, 8 - дожигатель отходящих газов, 9 - приемник для зольного остатка, 10 - центробежно-барботажный аппарат, 11 - рукавный фильтр, 12 - дымосос, 13 - трубу.

Технические параметры блока утилизации золы: температура плавления золы и температура газа в плавильном пространстве - 1400±50°С, разрежение - 20-30 мм вод. ст., температура дымовых газов после дожигателя - 1100-1150°С, удельные затраты электроэнергии - 0,9-1,2 кВт·ч/кг.

Способ осуществляется следующим образом. В бункерном блоке твердые бытовые и промышленные отходы принимают без сортировки как из спецмашин, так и из грузового транспорта общего назначения. Крупногабаритные металлические включения отделяют из отходов на стадии приема, а мелочь - из золы после сжигания отходов. Жидкие горючие и жидкие обводненные отходы принимают в отдельные емкости. Затем отсортированные горючие ТБО равномерно подаются на сжигание в блок сжигания. Для обеспечения высокой эффективности обезвреживания процесс сжигания отходов осуществляют в две стадии:

- озоление в противоточной вращающейся печи;

- дожигание дымовых газов в вихревом дожигателе.

Дымовые газы охлаждают в котле-утилизаторе с получением перегретого пара. Вырабатываемый пар отдается городским предприятиям, используется для собственных нужд завода в качестве греющего источника для абсорбционных тепловых насосов и догрева сетевой теплофикационной воды города или обогрева теплиц.

Затем дымовые газы поступают в блок дымоочистки, где выполняется мокрая очистка дымовых газов от пыли и вредных примесей.

Концентрированные стоки из системы газоочистки и сточные воды от промывки технологического оборудования используются для охлаждения золы с отводом пара в огнетехнический агрегат. Золу и шлам из блока сжигания и блока дымоочистки используют в блоке утилизации золы для производства строительных материалов.

Из переплавляемой золы в систему газоочистки уходят легколетучие компоненты (K, Na, С, Cl, S) и тяжелые металлы (Zn, Cu, Cd, Pb). Здесь же происходит улавливание вторичной пыли с повышенным содержанием тяжелых и цветных металлов (в т.ч. в виде шлама в ЦБА). Масса исходной золы и газов после плавления распределяется в соотношениях: шлак - 60%, вторичная зола от испарения легколетучих веществ и за счет механического уноса - 9,0%, дымовые газы - 29%, металл - 2%.

Гранулированный шлак в виде частиц размером до нескольких мм имеет высокую устойчивость к растворению в воде и слабых кислотах. Такой шлак пригоден для строительства дорог и производства строительных материалов.

В целом блок утилизации золы в составе МСЗ обеспечивает переработку в экологически безопасные продукты до 90% исходной массы золы. Диоксины, содержащиеся в исходной золе, в полученном после плавления шлаке отсутствуют полностью.

Похожие патенты RU2502017C1

название год авторы номер документа
КОМПЛЕКСНАЯ РАЙОННАЯ ТЕПЛОВАЯ СТАНЦИЯ ДЛЯ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ С ПРОИЗВОДСТВОМ ТЕПЛОВОЙ ЭНЕРГИИ И СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 2012
  • Аньшаков Анатолий Степанович
  • Алексеенко Сергей Владимирович
RU2502018C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Михалев Андрей Васильевич
  • Широков Василий Иванович
RU2570331C1
УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ОТХОДОВ 2022
  • Кондратьев Владимир Михайлович
  • Гагин Петр Викторович
RU2784299C1
УСТАНОВКА ДЛЯ УТИЛИЗАЦИИ ОТХОДОВ 2022
  • Стародубцев Виктор Николаевич
  • Кондратьев Владимир Михайлович
  • Каплун Татьяна Викторовна
RU2788409C1
СИСТЕМА ПЛАВЛЕНИЯ ЗОЛОШЛАКОВЫХ ОТХОДОВ МУСОРОСЖИГАЮЩЕГО ЗАВОДА 2022
  • Аньшаков Анатолий Степанович
  • Домаров Павел Вадимович
  • Кузьмин Михаил Георгиевич
  • Речкалов Александр Витальевич
RU2802494C1
СПОСОБ ПЛАВЛЕНИЯ ЗОЛОШЛАКОВ МУСОРОСЖИГАТЕЛЬНЫХ ЗАВОДОВ 2021
  • Аньшаков Анатолий Степанович
  • Фалеев Валентин Александрович
  • Домаров Павел Вадимович
RU2775593C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Старших Владимир Васильевич
  • Максимов Евгений Александрович
RU2523202C1
КОМПЛЕКС ЭКОЛОГИЧЕСКИ ЧИСТОЙ БЕЗОТХОДНОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ БЕЗ ПРЕДВАРИТЕЛЬНОЙ СОРТИРОВКИ И СУШКИ 2018
  • Иванов Владимир Васильевич
  • Алешин Сергей Юрьевич
  • Иванов Игорь Владимирович
  • Краснов Владимир Николаевич
  • Демешонок Константин Юрьевич
RU2700134C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ЛЕТУЧЕЙ ЗОНЫ, ОБРАЗУЮЩЕЙСЯ ПРИ СЖИГАНИИ ОТХОДОВ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2020
  • Фролов Сергей Михайлович
  • Набатников Сергей Александрович
  • Диесперов Константин Владимирович
  • Ачильдиев Евгений Рудольфович
RU2739241C1
УСТРОЙСТВО ТЕХНОЛОГИЧЕСКОЙ ЛИНИИ УТИЛИЗАЦИИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ С ПРИМЕНЕНИЕМ ТЕРМИЧЕСКОЙ ДЕСТРУКЦИИ 2014
  • Лавров Сергей Иванович
  • Борисов Сергей Петрович
  • Кочегаров Анатолий Дмитриевич
  • Хамхоев Махмут Ахметович
RU2576711C1

Реферат патента 2013 года СПОСОБ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ С ПРОИЗВОДСТВОМ ТЕПЛОВОЙ ЭНЕРГИИ И СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И МУСОРОСЖИГАТЕЛЬНЫЙ ЗАВОД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный реактор, футерованный изнутри; плазмотрон; бункер золы с механизмом ввода золы; систему слива расплава и грануляции шлака, источник электропитания, систему очистки дымовых газов. Плавильный реактор блока утилизации золы имеет металлический водоохлаждаемый кожух, блок утилизации золы содержит воздушный компрессор и водяной насос для охлаждения электродов плазмотрона и кожуха реактора, система очистки дымовых газов блока утилизации золы содержит дожигатель, вихревой скруббер (центробежно-барботажный аппарат) с щелочным раствором, рукавный фильтр для очистки от твердых примесей и приемник зольного остатка (вторичной золы). Изобретение позволяет повысить экологичность сжигания ТБО и снизить загрязнение окружающей среды. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 502 017 C1

1. Мусоросжигательный завод, состоящий из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный реактор, футерованный изнутри; плазмотрон; бункер золы с механизмом ввода золы; систему слива расплава и грануляции шлака, источник электропитания, систему очистки дымовых газов, отличающийся тем, что плавильный реактор блока утилизации золы имеет металлический водоохлаждаемый кожух, блок утилизации золы содержит воздушный компрессор и водяной насос для охлаждения электродов плазмотрона и кожуха реактора, система очистки дымовых газов блока утилизации золы содержит дожигатель, вихревой скруббер (центробежно-барботажный аппарат) с щелочным раствором, рукавный фильтр для очистки от твердых примесей и приемник зольного остатка (вторичной золы).

2. Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов, при котором твердые бытовые отходы поступают в бункерный блок, затем в блок сжигания ТБО, дымовые газы из блока сжигания ТБО поступают в блок водоподготовки и утилизации тепла, а затем в блок дымоочистки, зола из блока сжигания и блока дымоочистки поступает в блок утилизации золы, сначала в бункер золы с помощью механизма ввода золы, затем в реактор плавления золы, футерованный изнутри и снабженный плазмотроном; расплавленная зола поступает в систему слива расплава и грануляции шлака, оборудованную источником электропитания, системой очистки дымовых газов, отличающийся тем, что зола плавится в плавильном реакторе с металлическим водоохлаждаемым кожухом, при этом дымовые газы проходят через систему очистки дымовых газов блока утилизации золы, снабженную дожигателем, вихревым скруббером (центробежно-барботажным аппаратом) с щелочным раствором, рукавным фильтром для очистки от твердых примесей, а вторичная зола (зольный остаток) поступает в приемник зольного остатка.

Документы, цитированные в отчете о поиске Патент 2013 года RU2502017C1

Угольный комбайн 1947
  • Чикетов И.П.
SU88103A1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ПЕСТИЦИДОВ 2006
  • Ассаулюк Сергей Анатольевич
  • Сапунов Александр Юрьевич
  • Божко Сергей Владимирович
  • Михайлов Олег Владимирович
  • Щепочкин Максим Владимирович
RU2365817C2
RU 2004131094 A, 10.04.2006
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ОТХОДОВ 1995
  • Иляхин Сергей Васильевич
  • Симонов Александр Анатольевич
RU2108517C1
Резонансный усилитель с усилительной лампой, имеющей заземленный анод 1954
  • Поляков И.Л.
SU102979A1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ БЫТОВЫХ ОТХОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Неклеса Анатолий Тимофеевич
RU2293918C1
US 4438706 A, 27.03.1984
US 4534302 A, 13.08.1985.

RU 2 502 017 C1

Авторы

Аньшаков Анатолий Степанович

Алексеенко Сергей Владимирович

Даты

2013-12-20Публикация

2012-05-10Подача