СПОСОБ ИСПЫТАНИЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2004 года по МПК G01M15/00 

Описание патента на изобретение RU2238533C1

Изобретение относится к авиадвигателестроению, а именно к стендовым испытаниям новых образцов авиационных двигателей, оборудованных соплами с управляемым вектором тяги.

Известен способ испытаний ГТД, включающий определение сил осевой тяги на стенде с силоизмерительным устройством и предварительное нагружение последнего силой, направленной против силы тяги [1].

Указанный способ предназначен для доводки авиационных двигателей с реверсом тяги. При реализации способа перед запуском двигателя нагружают силоизмерительное устройство стенда осевой силой, большей силы обратной тяги двигателя. Производят измерение осевых сил при работе двигателя на режимах прямой и обратной тяг и определяют силы прямой и обратной тяг двигателя из выражений:

Rп=Рп-Рн и

Ro=Рн-Ро,

где Рп и Ро - осевые силы, действующие на силоизмерительное устройство стенда при работе двигателя на режимах прямой и обратной тяг, Рн осевая сила, действующая на силоизмерительное устройство стенда перед запуском двигателя.

Указанным способом невозможно определить вертикальную и боковую составляющие силы тяги для двигателя, оборудованного осесимметричным соплом с управляемым вектором тяги. Кроме того, определение силы тяги известным способом осуществляется с относительно низкой точностью, так как при нем не учитывается начальное отклонение оси сопла от оси двигателя, обусловленное погрешностями его установки. Это особенно важно для испытаний двигателей с поворотными соплами, так как необходимы исходные данные для определения вертикальной и боковой составляющих силы тяги.

Задачей изобретения является определение боковой и вертикальной составляющих силы тяги двигателя, оборудованного поворотным осесимметричным соплом, с учетом первоначального отклонения оси сопла от оси двигателя для обеспечения точности измерения.

Указанная задача решается тем, что в известном способе испытаний газотурбинного двигателя, включающем определение осевой тяги на стенде с силоизмерительным устройством и предварительное нагружение последнего силой, направленной против силы тяги и меньшей ее по величине, дополнительно нагружают силоизмерительное устройство силами, направленными против вертикальной и боковой составляющих силы тяги до получения их положительных значений в рабочем диапазоне углов отклонения сопла, после выхода двигателя на рабочий режим отклоняют сопло под углом к вертикальной оси двигателя, при каждом угле отклонения дополнительно к осевой определяют вертикальную и боковую составляющие силы тяги, строят графики зависимости осевой, вертикальной и боковой составляющих силы тяги от угла отклонения сопла и по максимальному значению осевой составляющей силы тяги определяют угол отклонения сопла α, при котором достигается максимальное значение осевой составляющей силы тяги, после чего вертикальную и боковую составляющие тяги определяют с помощью следующих зависимостей:

Ry факт.=Ry-Ry0 и Rz факт.=Rz-Rz0,

где Ry и Rz - величины вертикальной и боковой составляющих сил тяги, определенные непосредственно на стенде при соответствующем угле отклонения сопла, а Ry0 и Rz0 - величины вертикальной и боковой составляющих сил тяги, соответствующих на графике углу отклонения сопла, при котором осевая составляющая силы тяги имеет максимальное значение.

Такое осуществление способа позволяет определить начальное отклонение оси сопла от продольной оси двигателя, обусловленное погрешностями его установки, и с учетом этого отклонения определить боковую и вертикальную составляющие силы тяги для двигателя с поворотным осесимметричным соплом, что значительно повышает точность определения этих составляющих.

На фиг.1 показана принципиальная схема стенда для реализации предложенного способа,

на фиг.2 - вид сбоку на стенд,

на фиг.3 - графики зависимости осевой, вертикальной и боковой составляющих силы тяги от угла поворота сопла.

Стенд содержит силоизмерительное устройство, включающее динамометрическую платформу 1 с блоком измерения усилий 2 и раму 3 для установки испытываемого двигателя 4 с поворотным соплом 5.

Блок измерения усилий 2 снабжен приспособлениями 6, 7 и 8 для загрузки устройства соответственно осевой, вертикальной и боковой силами.

На фиг.1 углом α0 обозначено первоначальное отклонение оси поворотного сопла 5 от продольной оси двигателя.

На фиг.2 показаны различные положения сопла 5 при его перемещении в плоскости, проходящей под углом β к вертикальной оси двигателя: предельное "нижнее" положение сопла А, промежуточное положение В сопла между нейтральным и предельно "нижним", предельно "верхнее" положение сопла С и промежуточное положение сопла D между нейтральным положением и предельно "верхним".

Способ осуществляют следующим образом. Перед запуском двигателя блок измерения усилий 2 силоизмерительного устройства нагружают с помощью приспособлений 6, 7 и 8 осевой силой Р1, вертикальной и боковой силами Р2 и Р3, обеспечивающими положительные значения этих составляющих при отклонении сопла в рабочем диапазоне углов. Запускают двигатель, выходят на рабочий режим и с помощью блока измерения усилий 2 определяют осевую, вертикальную и боковую составляющие силы тяги. Затем отклоняют сопло 5 в положения А, В, С, D и при каждом угле отклонения повторяют измерение осевой, вертикальной и боковой составляющих силы тяги двигателя. Строят график зависимости осевой, вертикальной и боковой составляющих силы тяги от угла отклонения сопла (фиг.3) и по максимальному значению осевой составляющей силы тяги определяют угол отклонения сопла α, при котором достигается это значение. Далее определяют вертикальную и боковую составляющие силы тяги с помощью следующих зависимостей:

Ry факт=Ry-Ry0 и Rz факт.=Rz-Rz0,

где Ry и Rz - величины вертикальной и боковой составляющих сил тяги, определенные непосредственно на стенде при соответствующем угле отклонения сопла, а Ry0 и Rz0 - величины вертикальной и боковой составляющих сил тяги, соответствующих на графике углу отклонения сопла α, при котором осевая составляющая силы тяги имеет максимальное значение.

Осуществление изобретения позволяет повысить точность измерения составляющих сил тяги двигателя.

Источники информации

1. Патент РФ, кл. G 01 M 15/00, №2162593, опубл. 19.12.1995 г.

Похожие патенты RU2238533C1

название год авторы номер документа
СПОСОБ ИСПЫТАНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ С ПОВОРОТНЫМ РЕАКТИВНЫМ СОПЛОМ 2002
  • Андреев А.В.
  • Лебедев В.А.
  • Марчуков Е.Ю.
  • Никутов О.Н.
  • Поляков Б.С.
  • Фадеев В.А.
  • Чепкин В.М.
RU2216005C1
СТЕНД ДЛЯ ИЗМЕРЕНИЯ КОМПОНЕНТОВ СИЛЫ ТЯГИ РЕАКТИВНОГО ДВИГАТЕЛЯ 2004
  • Панюков Александр Николаевич
  • Куприянов Александр Владимирович
  • Хомутовский Виктор Анатольевич
  • Горохов Владимир Дмитриевич
RU2276279C1
СТЕНД ДЛЯ ИСПЫТАНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2003
  • Андреев А.В.
  • Кузин В.Д.
  • Колесниченко В.Г.
  • Марчуков Е.Ю.
  • Ожигин Ф.А.
  • Павленко В.Н.
  • Руднев Ю.Т.
  • Скопич В.И.
  • Яшуничкин И.К.
RU2250446C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЯГИ СОПЛА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ В ПОЛЁТЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Подколзин В.Г.
  • Полунин И.М.
  • Кулаков А.Д.
RU2230302C1
СПОСОБ АВТОМАТИЗИРОВАННОЙ ОЦЕНКИ В ПОЛЕТЕ СУММАРНОЙ ТЯГИ ДВИГАТЕЛЕЙ ЛЕТАТЕЛЬНОГО АППАРАТА 2008
  • Поплавский Борис Кириллович
  • Леонов Владимир Артемиевич
  • Бабич Сергей Петрович
  • Калинин Юрий Иванович
RU2364846C1
Способ испытания высокоскоростного летательного аппарата 2015
  • Александров Вадим Юрьевич
  • Мосеев Дмитрий Сергеевич
RU2610329C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЯГИ МИКРОДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Пиюков Сергей Андреевич
  • Дубов Арнольд Васильевич
  • Котовщиков Владимир Александрович
  • Березницкая Любовь Анатольевна
RU2334963C2
Стенд для измерения нагрузок, воздействующих на объект авиационной техники 2017
  • Александров Вадим Юрьевич
  • Головченко Иван Юрьевич
  • Ильченко Михаил Александрович
  • Сезёмин Владимир Александрович
  • Серебряков Дамир Ильдарович
RU2651627C1
СПОСОБ СОЗДАНИЯ ТЯГИ РЕАКТИВНОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Кехваянц В.Г.
RU2103538C1
СИСТЕМА СИНХРОНИЗАЦИИ СТВОРОК СОПЛА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2006
  • Федоров Алексей Михайлович
  • Мурашов Алексей Александрович
RU2317432C1

Иллюстрации к изобретению RU 2 238 533 C1

Реферат патента 2004 года СПОСОБ ИСПЫТАНИЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к авиадвигателестроению, а именно к стендовым испытаниям авиационных двигателей, оборудованных соплами с управляемым вектором тяги. Способ испытаний ГТД осуществляют на стенде с силоизмерительным устройством, которое предварительно нагружает осевой, вертикальной и боковой силами P1, Р2, Р3, направленными против осевой, вертикальной и боковой составляющих силы тяги до получения их положительных значений в рабочем диапазоне углов отклонения сопла, после выхода двигателя на рабочий режим отклоняют сопло под углом к вертикальной оси двигателя, при каждом угле отклонения определяют осевую, вертикальную и боковую составляющие силы тяги. Строят график зависимости осевой, вертикальной и боковой составляющих силы тяги от угла отклонения сопла и по максимальному значению осевой составляющей силы тяги определяют угол отклонения сопла α, при котором достигается это значение, после чего вертикальную и боковую составляющие силы тяги определяют с помощью следующих зависимостей: Ry факт.=Ry-Ry0 и Rz факт.=Rz-Rz0, где Ry и Rz - величины вертикальной и боковой составляющих сил тяги, определенные непосредственно на стенде при соответствующем угле отклонения сопла, а Ry0 и Rz0 - величины вертикальной и боковой составляющих силы тяги, соответствующие на графике углу отклонения сопла α, при котором осевая составляющая силы тяги имеет максимальное значение. Такой способ позволит обеспечить точность измерения. 3 ил.

Формула изобретения RU 2 238 533 C1

Способ испытаний газотурбинного двигателя, включающий определение осевой тяги на стенде с силоизмерительным устройством и предварительное нагружение последнего силой, направленной против силы тяги и меньшей ее по величине, отличающийся тем, что для двигателя, оборудованного осесимметричным соплом с управляемым вектором тяги, дополнительно нагружают силоизмерительное устройство силами, направленными против вертикальной и боковой составляющих силы тяги до получения их положительных значений в рабочем диапазоне углов отклонения сопла, после выхода двигателя на рабочий режим отклоняют сопло под углом к вертикальной оси двигателя, при каждом угле отклонения дополнительно к осевой определяют вертикальную и боковую составляющие силы тяги, строят график зависимости осевой, вертикальной и боковой составляющих силы тяги от угла отклонения сопла и по максимальному значению осевой составляющей силы тяги определяют угол отклонения сопла α, при котором достигается это значение, после чего вертикальную и боковую составляющие силы тяги определяют с помощью следующих зависимостей:

Ry факт.=Ry-R0y

,

Rzфакт.=Rz-R0z

,

где Ry и Rz - величины вертикальной и боковой составляющих сил тяги, определенные непосредственно на стенде при соответствующем угле отклонения сопла;

R0y

и R0 z
- величины вертикальной и боковой составляющих силы тяги, соответствующие на графике углу отклонения сопла α, при котором осевая составляющая силы тяги имеет максимальное значение.

Документы, цитированные в отчете о поиске Патент 2004 года RU2238533C1

СПОСОБ ИСПЫТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1995
  • Покровский Н.В.
RU2162593C2
СТЕНД ДЛЯ ИСПЫТАНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ С ПОВОРОТНЫМ ОСЕСИММЕТРИЧНЫМ РЕАКТИВНЫМ СОПЛОМ 1998
  • Андреев А.В.
  • Лебедев В.А.
  • Марчуков Е.Ю.
  • Павленко В.Н.
  • Руднев Ю.Т.
  • Целяев И.Г.
  • Чепкин В.М.
RU2144658C1
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВИАЦИОННЫХ ГТД 1996
  • Виноградов Ю.В.
  • Виноградов В.Ю.
RU2118810C1
СТЕНД ДЛЯ ИСПЫТАНИЯ РЕАКТИВНОГО ДВИГАТЕЛЯ 1996
  • Буренков Н.А.
  • Платонов Ю.Е.
  • Куприянов А.В.
  • Звягинцев В.А.
RU2117272C1
EP 0458453 A2, 27.08.1991
DE 2921976 A, 26.02.1980.

RU 2 238 533 C1

Авторы

Андреев А.В.

Марчуков Е.Ю.

Фадеев В.А.

Чепкин В.М.

Яшуничкин И.К.

Даты

2004-10-20Публикация

2003-02-20Подача