Изобретение относится к способу контролирования степени и однородности прокаливания глиноземов в процессе их производства.
Большая часть технических глиноземов в процессе их производства проходит через стадию прокаливания. Эта стадия является определяющей для потребительских свойств порошка, которые могут быть востребованы в многочисленных областях (полирование, огнеупорные бетоны, тонкая керамика...). Известно, что степень прокаливания хорошо коррелируется с развитой поверхностью прокаленного глинозема, а у глиноземов, которые представляют для нас интерес, последняя, измеренная с помощью метода BET, составляет от 0,5 до 5 м2/г.
В то же время многочисленные исследования и некоторые предполагаемые области применения (керамика, электроника...) указывают на необходимость более тонкого анализа этих продуктов - анализа, дающего, в частности, информацию об однородности прокаливания продукта: ясно, что, если два кремнезема обладают одинаковой поверхностью BET, равной, например, 1 м2/г, но один их них однороден, а второй представляет собой смесь двух кремнеземов с поверхностями 0,5 и 1,5 м2/г, то эти кремнеземы ни в коем случае не будут иметь одни те же потребительские свойства.
Состояние техники
В процессе прокаливания зерна кремнеземов превращаются в более или менее крупные (в зависимости от степени прокаливания) агломераты кристаллитов.
Из патента US 3941874 известен способ, позволяющий измерять степень прокаливания кремнезема путем измерения потерь его массы.
Для оценки степени достигаемого прокаливания можно также размолоть кремнезем до размера кристаллитов и произвести гранулометрический анализ.
Однако этот способ на практике не применяют или применяют редко, поскольку он занимает много времени и не совместим с осуществлением какого-либо способа.
Можно также измерять степень прокаливания опосредованным образом по развитой поверхности глинозема с использованием классического способа, каковым является метод BET. Этот метод состоит в измерении количества азота, адсорбированного на развитой поверхности глинозема. Это количество тем больше, чем больше поверхность и чем пористее зерна (но при условии, что поры являются открытыми). Этот метод используют в производстве, но он занимает много времени и не дает информации о неоднородности степени прокаливания продукта.
Из известных аналитических методов может быть использован анализ изображений, но он дает существенно пространственную информацию (размер зерен, факторы формы), которая не коррелируется с желаемой информацией (степень и однородность прокаливания).
Поставленная задача
Заявитель сделал попытку ввести при проведении процесса приготовления глиноземов средство для измерения степени и однородности прокаливания.
Для того, чтобы оценить среднюю степень прокаливания и дать информацию о неоднородности степени прокаливания производимого глинозема, названное выше средство должно быть более быстрым, чем метод BЕТ.
Предмет изобретения
Первым предметом изобретения является способ измерения степени и однородности прокаливания глинозема, включающий в себя использование устройства для анализа изображений, оборудованное камерой, чувствительной в спектрально-аналитическом окне, соответствующем области длин волн в видимом диапазоне или близкой к нему, и включающий в себя следующие стадии:
a) смешение анализируемого кремнезема с жидкостью, показатель преломления которой в названной выше области длин волн находится в пределах от показателя преломления слабо прокаленного глинозема до показателя преломления сильно прокаленного глинозема;
b) подготовка пластины для исследования названной смеси в названном устройстве для анализа изображений, где эту смесь освещают с помощью постоянного полихроматического излучения, совпадающего с названным выше спектрально-аналитическим окном;
c) прием изображения камерой и обработка сигнала, дающая описание изображения, построенное из определенного числа пикселей с тремя цветовыми составляющими;
d) статистическая обработка названных пикселей с использованием их цветовых составляющих, позволяющая получить степень прокаливания и однородность прокаливания.
Заявитель исходил из гипотезы о том, что при смешении порошка глинозема с какой-либо жидкостью, обладающей средним показателем преломления в пределах от крайних показателей сильно прокаленного глинозема и слабо прокаленного глинозема, создают наилучшие условия для усиления разницы в ответе на данное освещение, как правило, создаваемое видимым светом, и для того, чтобы эта разница в ответах могла быть количественно обработана и подвергнута статистической обработке для характеристики наблюдаемой степени прокаливания глинозема, а также однородности проведенного на глиноземе прокаливания.
Заявителем были получены очень обнадеживающие результаты, которые объясняются следующей совокупностью фактов.
- Показатель преломления какого-либо тела меняется в зависимости от длины волны проходящего через него излучения. В области видимого света это изменение значительно сильнее для жидкостей, чем для твердых веществ. Когда какое-либо твердое вещество погружают в жидкость, имеющую такой же показатель преломления, никакого рассеяния или поглощения света не происходит. Напротив, если показатели преломления различны, отмечается явление дисперсии/поглощения.
- В то же время известно, что показатель преломления глинозема меняется в зависимости от степени его прокаливания. Если наблюдать за глиноземом, погруженным в жидкость, и если при этом для данной длины волны показатели преломления глинозема и жидкости различаются, имеет место явление дисперсии/поглощения, которое выражается в более или менее сильном отклике интенсивности света.
- Когда какое-либо твердое вещество, в данном случае глинозем, диспергируют до очень большого числа частиц, множество граней оказывается ориентированным случайным образом по отношению к падающему лучу света. В результате этого, чтобы получить значимый статистический эффект на отраженном изображении или изображении в проходящем свете, необходимо осветить большое число частиц.
- Если для освещения используют полихроматический свет (например, в области видимого света), отклик по интенсивности будет различным в зависимости от длины волны. Обработка принимаемого камерой сигнала позволяет получать цветное изображение, которое может быть разложено на множество пикселей, характеризуемых тремя цветовыми компонентами (по системе КЗС: красный-зеленый-синий, рекомендованной в 1931 году Международной компанией по освещению CIE, или же по системе Lab (или по системе Hunt), а также, возможно, по любой системе отсчета какого-либо трехмерного цветного пространства...).
Заявителем было установлено, что цвет каждого продукта, выраженный таким образом попиксельно в трехмерном цветовом пространстве, является характеристическим для наблюдаемого продукта, и что, занеся желаемые данные на гистограмму, можно сравнивать эту гистограмму со "стандартными" гистограммами для известных глиноземов, степень прокаливания которых может быть в то же время измерена методом BЕТ.
Два из перечисленных выше пунктов относятся к полихроматическому излучению, однако нельзя обнаружить никаких различий между спектрально-аналитическим окном для излучения, освещающего смесь, и видимым спектром, используемым для описания результата обработки принятого камерой сигнала.
Спектрально-аналитическое окно может, естественно, соответствовать спектру видимого света, но оно может также соответствовать более узкой области длин волн, непрерывной или прерывистой, или расширенной в сторону инфракрасных или ультрафиолетовых волн. Важно, чтобы спектрально-аналитическое окно было подобрано таким образом, чтобы показатели преломления в большей или меньшей степени прокаленных глиноземов оставались постоянными и чтобы показатели преломления жидкости менялись в пределах этой области, которая в достаточной степени широка для того, чтобы показатель преломления жидкости находился в пределах от показателя преломления слабо прокаленного глинозема до сильно прокаленного глинозема. С другой стороны, порядок величины длин волн должен быть значительно ниже порядка размера частиц, что заставляет обычно устанавливать спектрально-аналитическое окно в области длин волн от 1000 до 10000 , благодаря чему становится возможным использование видимого спектра (приблизительно 4000-7000 ), что облегчает процесс измерения. Чтобы облегчить дальнейшее изложение, мы будем ассоциировать спектрально-аналитическое окно со спектром видимого света и использовать термины, которые обычно используют при исследовании объекта, освещенного видимым светом.
При подготовке к исследованию анализируемый порошок смешивают с жидкостью с определенным показателем преломления. Поскольку в видимом спектре показатель преломления непрокаленного глинозема близок к 1,70, а показатель преломления α-окиси алюминия близок к 1,76, предпочтительно выбирать жидкость с показателем преломления, близким к 1,73. Такие жидкости доступны в продаже, например йодистый метилен.
Смесь помещают на стеклянную пластину, например, типа тех, которые используют в оптической микроскопии. После этого пластину помещают в просмотровое поле камеры через систему увеличения таким образом, чтобы каждая частица была представлена достаточным числом пикселей. Обычно для изображения с 640×480 пикселей предпочтительно выбирать такое увеличение, чтобы изображение включало менее 1000 частиц. В то же время число частиц должно быть достаточно большим, так как необходимо получить для изображения значимый статистический эффект. Система увеличения используемого в изобретении устройства для анализа изображений дает возможность анализировать изображения, содержащие не менее 50 частиц.
Смесь освещают постоянным полихроматическим излучением, совместимым со спектрально-аналитическим окном камеры, означающим то, что область длин волн отражаемого или проходящего излучения находится в пределах спектрально-аналитического окна камеры.
Принимаемый камерой сигнал обрабатывают таким образом, чтобы получить изображение, определяемое данным числом пикселей с тремя цветовыми составляющими. Изображение может содержать цвет, соответствующий излучению, принимаемому камерой, но оно может также содержать кодированные цвета, произвольно характеризующие принимаемые излучения (в этом случае говорят о "ложных цветах"). В то же время для того, чтобы описать каждый пиксель изображения, предпочтительно иметь возможность располагать полным объемом цветового пространства.
После этого обрабатывают пиксели, характеризуемые тремя составляющими какого-либо цветового пространства. Прежде всего необходимо быть уверенными, что эти пиксели соответствуют каким-либо частицам, поскольку не только последние входят в смесь, приготовленную на пластине, и они не занимают всей площади изображения. Можно легко произвести сортировку, поскольку часть изображения, соответствующая фону, т.е. занимаемая только жидкостью, передается со значительно большей световой интенсивностью. Таким образом, можно удалить все пиксели, три составляющих которых превосходят некоторое данное значение.
Остающиеся после этого пиксели представлены в цветовом пространстве. Поскольку наблюдаемый прокаленный глинозем не соответствует идеально однородной фазе и поскольку каждый пиксель может в действительности соответствовать накоплению фотонов с разной энергией и, следовательно, цветовой смеси, представление в цветовом пространстве пикселей изображения соответствует более или менее протяженному множеству точек. Заявителем установлено, что подбирая жидкость с коэффициентом дифракции, соответствующим выбранному спектрально-аналитическому окну, можно различать глиноземы по множествам точек, представляющим глиноземы в цветовом пространстве, причем локализация этих множеств связана со степенью прокаливания, а протяженность этих множеств связана с их степенью однородности.
Располагая этими представлениями в пространстве трех составляющих, можно осуществить несколько статистических обработок. Описанная здесь обработка имеет целью более легкое для интерпретации представление. Она состоит в сравнивании анализируемых изображений с репрезентативными множествами точек двух известных глиноземов с как можно более различающимися уровнями прокаливания. Выбирают, например, α-окись алюминия и какой-либо недопрокаленный глинозем, преимущественно наименее прокаленный, но как можно более однородный.
В принципе, два множества точек, одно из которых соответствует α-окиси алюминия, а другое недопрокаленному глинозему, должны отличаться одно от другого. В противном случае предпочтительно подобрать другую жидкость и/или другое спектрально-аналитическое окно.
Если два множества точек различны, можно определить подпространство, которое "проходит" через эти множества (например, проходящие через их центры тяжести ось или плоскость) и в котором оценка степени прокаливания может быть произведена по "расстояниям" между точками, определенным для этого подпространства. Таким образом, можно спроецировать множества точек анализируемого глинозема на это подпространство и оценить расстояние между этой проекцией и проекцией α-окиси алюминия и/или расстояние между этой проекцией и проекцией недопрокаленного глинозема.
Итак, освещая смесь глинозем + жидкость видимым белым светом, отмечают, что частица α-окиси алюминия дает синее (голубое) изображение, а недопрокаленный глинозем дает изображение в большей или меньшей степени темного каштанового цвета. Если пиксели были определены в системе КЗС, их пытаются классифицировать по составляющей "С-К" (синий минус красный). Классифицируя ряд пикселей, имеющих возрастающую составляющую С-К, получают характеристическую гистограмму или спектр: чем больше глинозем прокален, тем в большей степени его спектр сдвинут вправо и, наоборот, тем меньше глинозем прокален, чем в большей степени его спектр сдвинут влево.
Среднее из полученной таким образом диаграммы характеризует степень прокаливания анализируемого кремнезема.
Среднеквадратичное отклонение полученной таким образом диаграммы характеризует однородность прокаливания анализируемого кремнезема.
Вторым предметом изобретения является использование описанного выше способа измерения для контроля степени и однородности прокаливания глинозема при его непрерывном производстве во вращающейся печи. Этот способ измерения степени прокаливания глинозема намного превосходит по скорости метод BET и позволяет намного быстрее реагировать на отклонение параметров печи. Это особенно ценно в случае вращающейся печи, работающей в непрерывном режиме и производящей несколько тонн окиси алюминия в час. Наконец, благодаря этому способу, который в настоящее время является единственным из известных способов, позволяющим установить равномерность прокаливания, можно скорректировать отрицательные последствия рециркуляции пыли, нежелательное образование которой во вращающихся печах трудно поддается контролю и приводит к "загрязнению" получаемого глинозема глиноземом с различной гранулометрией.
Из четырех взятых из печи образцов глинозема приготовлены четыре пластины. Каждую пластину исследуют в трех различных участках с использованием заявленного способа измерения. Получают результаты, воспроизводящиеся с точностью до, приблизительно, 5%.
Фиг.1 иллюстрирует накопительную цепь приведенного ниже примера 1.
Фиг.2 представляет три спектра отклика по оси (С-К+100) для трех глиноземов (а, b, с) с различными степенями прокаливания.
Фиг.3 демонстрирует зависимость между индексом прокаливания (IC), измеренным с помощью метода изобретения, описанного в примере, и поверхностью BET, выраженной в м2/г.
Фиг.4 напоминает о зависимости между поверхностью BET и размером кристаллитов (ТС), выраженным в μм.
Фиг.5 показывает взаимосвязь между IC и ТС в области, которая в наибольшей степени интересует специалистов по керамике.
Фиг.6 демонстрирует спектры, полученные при смешении двух кремнеземов с разной степенью прокаливания.
Фиг.7 демонстрирует зависимость индекса однородности смеси двух кремнеземов, один из которых прокален сильно, а другой недопрокален, от процентного содержания одного из компонентов смеси.
Примеры осуществления изобретения
Накопительная цепь (фиг.1)
Накопительная цепь, схема которой приведена на фиг.1, включает в себя следующие элементы:
1) Приготовление пластины А, на которую помещают смесь глинозема с жидкостью, показатель преломления которой должен быть выбран с соблюдением следующего условия: следует избегать появления пузырьков и распределять частицы по возможности равномерно, чтобы они не прилипали одна к другой. Мы остановили свой выбор на жидкости с показателем преломления 1,73. При осуществлении промышленного контроля прокаливания во вращающейся печи приготовление пластины может быть автоматизировано.
2) Поскольку зерна глинозема имеют микронный масштаб, рекомендуется использование бинокулярного микроскопа (В) с объективами, меняемыми в зависимости от глинозема. Цель состоит в том, чтобы иметь зерна в количестве, достаточном для корректного статистического анализа (таким образом отпадает необходимость увеличивать число анализов).
3) Пластины освещают светом видимого спектра. Регулирование и постоянство освещения существенны, поскольку они влияют на цветные составляющие пикселей принимаемого камерой (С) изображения. Нужно, в частности, избегать насыщенных по цветовой интенсивности сигналов.
Камера в этом примере является, таким образом, камерой с матрицей моно-ПЗС. Камера три-ПЗС, являющаяся более точной, поскольку она дает возможность иметь отдельно три основных цвета (красный-зеленый-синий), не является необходимой, но она позволяет получать более детальную информацию, что снижает неопределенность в измерениях, производимых с цветными изображениями.
4) Информационная система D включает в себя:
- цифровую карту, которая позволяет превращать принимаемую камерой информацию в цифровые данные и обеспечивает многочисленные возможности регулирования (оттенок, насыщение, контраст, блеск...),
- программу обработки изображений в различных форматах (RGB, HSL, полутоновом...). Система макро-команд обеспечивает автоматическаую обработку накоплений. Нами была использована система OPTIMAS,
- используемый компьютер является достаточно мощным для обработки накапливаемых изображений (640×480 пикселей × 3 составляющие). При необходимости в качестве компьютера может быть использован портативный компьютер с оперативной памятью 48 Мбайт.
5) Таким образом, цвет каждого продукта выражается попиксельно в трехмерном цветовом пространстве, и каждый оттенок цвета может быть перенесен на гистограмму, откуда могут быть взяты требуемые данные.
Классифицируя пиксели по их составляющим, получают спектр (Е) путем проецирования на одну из осей, наилучшим образом подходящую для акцентирования разницы в отклике. Таким образом, зерна располагают по степени их прокаливания. Среднюю величину спектра можно легко связать со степенью прокаливания, которая, в свою очередь, коррелируется с поверхностью BET: таким образом, каждый ряд продуктов имеет свой специфический рисунок спектра. Наряду с этим дисперсия (размывание кривой) дает надежную оценку неоднородности прокаливания каждого продукта.
Пример приложения
Координаты хроматического пространства: КЗС, где осью, на которую проецируется спектр, является ось С-К
В этих координатах чем более синей является составляющая пикселя, тем в большей степени соответствующая часть зерна считается прокаленной. Поэтому мы рассчитали для каждого пикселя разницу между синей составляющей (принятой в интервале от О до 255) и красной составляющей (то же) и перенесли на ось С-К+100 (разность между синей составляющей и красной составляющей плюс 100) популяции пикселей, соответствующие уровням этой разницы, сгруппированным с шагом 10. Полученные таким образом гистограммы имеют вид характеристических спектров фиг.2, относящихся к трем глиноземам с различными степенями прокаливания.
Глинозем а является металлургическим, мало прокаленным глиноземом, в котором значительная часть зерен имеет синюю составляющую ниже красной составляющей: зерна имеют цвет, близкий к каштановому. Напротив, глинозем с является глиноземом, прокаленным в присутствии минерализатора. Он в основном имеет синие зерна. Глинозем b является промежуточным глиноземом, который обладает спектром, расположенным между двумя крайними спектрами. Глиноземы а, b и с характеризуют убывание поверхностей ВЕТ (а: 75 м2/г; b: 3,9 м2/г; с: 1,1 м2/г). Таким образом, продукты классифицируются по степени прокаливания или, в обратном порядке, по их поверхности BET.
Отмечается, что некоторые пики являются характеристическими для группы глиноземов:
- пик при 60: зерна недопрокалены,
- пик при 180: зерна прокалены.
Определение индекса прокаливания
Из спектров, таких как спектры на фиг.2, может быть определен индекс прокаливания (IC).
Пусть i означает классы в пределах от 0 до 260 (с шагом 10), fi означает процентное содержание и сi - значение разницы (синяя составляющая - красная составляющая + 100), соответствующие каждому классу i. Тогда индекс прокаливания определяется как
Для всей совокупности продуктов находят биективное соответствие между индексом прокаливания (IC) и значениями BET (фиг.3).
Фиг.4 демонстрирует установленную ранее корреляцию между поверхностью BET и размером кристаллита (ТО (охарактеризованную здесь сквозным диаметром d50, полученным с помощью гранулометрического анализа после размола) в области, представляющей интерес для специалистов по керамике и огнеупорным материалам (от 0,8 до 5 м2/г). Эта корреляция относится к типу
BET=A/(TC-L)+B,
где В (порядка 0,5 м2/г) означает аналитический предел измерения BET, a L (порядка 0,4 μм) означает аналитический предел гранулометрического измерения.
Таким образом, индекс прокаливания IC можно коррелировать с размером кристаллитов ТС, и в области, представляющей интерес для специалистов по керамике и огнеупорным материалам, получать линейную зависимость ТС=А’·IC+В’ (фиг.5). Такую зависимость выводят для каждого ряда продуктов.
Определение индекса однородности
Спектры отдельных продуктов в большей степени вытянуты по сравнению с другими и характеризуются различными цветами зерен. Индекс однородности был предложен с целью учета вытянутости и дисперсии кривых. Для ряда продуктов было установлено среднеквадратичное отклонение частот.
С целью проиллюстрировать репрезентативность этого индекса мы приготовили в лаборатории два продукта: один прокаленный (BET=1,4 м2/г) и один недопрокаленный (BET=77 м2/г), которые мы затем смешали. Первый (представленный на фиг.6 как "100% alpha" (100% α)) характеризуется сжатой кривой, а второй (представленный на фиг.6 как "0% alpha") более вытянутой кривой. Спектры, полученные на разных смесях (соответствующих "х% alpha", где х последовательно равен 95, 90, 85, 80, 60 и 40), представлены на фиг.6.
Фиг.7 демонстрирует зависимость индекса однородности (IH) разных приготовленных смесей от процентного содержания прокаленного глинозема (выраженного в виде "% alpha"). Отмечено, что любая смесь, содержащая до 70% прокаленного глинозема, имеет более низкий индекс однородности, чем индекс однородности недопрокаленного глинозема.
Преимущества способа по изобретению
- Быстрый и надежный отклик.
- Комплексный метод измерений в процессе слежения за производством прокаленных глиноземов. В практическом плане приготовление образца не требует высокой квалификации, а определение коэффициентов (индексов) прокаливания (IC) и однородности (IH) является автоматическим, что позволяет оператору быстро отреагировать в случае отклонения производственных параметров. Эта ускоренная реакция имеет два положительных последствия: большая маневренность в работе печи и большее постоянство условий прокаливания. Благодаря этому можно повысить производительность на 20%.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИИ АКТИВНЫХ КОМПОНЕНТОВ КРЕМНЕЗЕМНО-ГЛИНОЗЕМНОЙ МАТРИЦЫ ДЛЯ КАТАЛИЗАТОРОВ КРЕКИНГА КУБОВЫХ ОСТАТКОВ | 2018 |
|
RU2785909C2 |
ЗАЩИТНЫЙ ЭЛЕМЕНТ И СПОСОБ ИЗГОТОВЛЕНИЯ ЗАЩИТНОГО ЭЛЕМЕНТА СО СВЕТОРАССЕИВАЮЩИМИ СТРУКТУРАМИ | 2015 |
|
RU2705635C2 |
ВИДЕОСПЕКТРОМЕТР ДЛЯ ЭКСПРЕСС-КОНТРОЛЯ ЖИДКИХ СВЕТОПРОПУСКАЮЩИХ СРЕД | 2020 |
|
RU2750294C1 |
СИНТЕЗ ЦЕОЛИТА С ИСТОЧНИКОМ ФТОРИДА | 2017 |
|
RU2772154C2 |
Защитное устройство на основе дифракционных структур нулевого порядка | 2022 |
|
RU2801793C1 |
Способ регистрации процессов осаждения на поверхность твердого тела с двумерной визуализацией и устройство для его осуществления | 2017 |
|
RU2661454C1 |
ПОРТАТИВНОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ХРОМОФОРОВ В КОЖЕ И СПОСОБ ПРИМЕНЕНИЯ УСТРОЙСТВА | 2014 |
|
RU2601678C2 |
СИНТЕЗ ЦЕОЛИТА С ИСТОЧНИКОМ ФТОРИДА | 2017 |
|
RU2772519C2 |
ПРЕОБРАЗОВАТЕЛЬ ИЗОБРАЖЕНИЯ В ВИДИМОМ И БЛИЖНЕМ ИНФРАКРАСНОМ ДИАПАЗОНАХ СПЕКТРА | 2006 |
|
RU2321035C1 |
ПОРТАТИВНЫЙ ВИДЕОСПЕКТРОМЕТР | 2020 |
|
RU2750292C1 |
Использование - измерительная техника. Способ включает следующие стадии: смешение анализируемого кремнезема с жидкостью, показатель преломления которой находится в пределах от показателя преломления непрокаленного глинозема до показателя преломления прокаленного глинозема; подготовку пластины для исследования названной смеси в названном устройстве для анализа изображений, где эту смесь освещают с помощью постоянного полихроматического излучения прием изображения камерой, и обработку сигнала, дающего описание изображения, построенного из определенного числа пикселей с тремя цветовыми составляющими; статистическую обработку названных пикселей с использованием их цветовых составляющих, позволяющую получить степень прокаливания и однородность прокаливания. Технический результат - ускорение процесса измерений. 2 н. и 4 з.п. ф-лы, 7 ил.
US 3941874 А, 02.03.1976 | |||
RU 94042255 А1, 20.09.1996 | |||
АВТОМАТИЧЕСКИЙ ИЗМЕРИТЕЛЬ НЕОДНОРОДНОСТЕЙ ПОВЕРХНОСТИ ОБЪЕКТА | 0 |
|
SU319840A1 |
СПОСОБ ПОЛУЧЕНИЯ ДЕКОРАТИВНОЙ ФОЛЬГИ | 0 |
|
SU352911A1 |
Авторы
Даты
2004-12-20—Публикация
2000-11-21—Подача