ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР (ВАРИАНТЫ) Российский патент 2004 года по МПК B23K26/06 G02B27/09 

Описание патента на изобретение RU2243072C2

Изобретение относится к области лазерной техники, а именно к способам транспортировки луча мощных многомодовых Nd:YAG лазеров в рабочую зону.

Лазерный комплекс кроме собственно реактора-лазера включает в себя оптические системы формирования лазерного излучения и транспортировки его к объекту воздействия, систему управления и защиты реактора и систему управления лазерным излучением, периферийные системы прокачки и охлаждения лазерной среды и теплоносителя.

Выходное лазерное излучение состоит из многих мод, на которые оказывают влияние различные неоднородности структуры активного вещества. Вследствие этого излучение твердотельного лазера характеризуется понятием угловая расходимость θ . Для Nd:YAG лазеров угловая расходимость лежит в пределах θ =2... 20 мрад.

В пучке лазерного излучения угловую расходимость формируют ближняя и дальняя зоны. В ближней зоне пространственное распределение интенсивности в луче такое, как и на выходной апертуре лазера, и угловая расходимость θ луча мала. Эти условия сохраняются на расстоянии L0 порядка D0/10, где D0d2л

/2λ 0 (D0 - диаметр активного элемента, dл - диаметр луча; λ 0 - длина волны).

В дальней зоне угловая расходимость увеличивается, что ведет к увеличению диаметра пучка падающего на линзу и его геометрической аберрации, возникающей вследствие наклонного падения относительно главной оптической оси системы.

В мощных технологических Nd:YAG лазерных системах из-за большой расходимости многомодового излучения (до 20 мрад) в случае расположения зоны обработки лазерным лучом на расстоянии, значительно превышающем расстояние Lо, возникает проблема в исполнении технологических процессов резки материалов лазерным излучением: необходимо либо сокращать технологическое поле обработки, либо увеличивать диаметр линзы, а это в свою очередь ведет к значительному увеличению массо-габаритых характеристик и удорожанию всей конструкции.

Известен способ стабилизации и транспортировки луча твердотельного лазера, заключающийся в том, что предварительно определяют в соответствии с конструкцией лазерных систем и технологическими требованиями расстояние L1 на котором конструктивно возможно расположить оптическую стабилизирующую систему, расстояние L, на которое необходимо транспортировать предварительно сформированный лазерный луч для осуществления технологических операций в зоне обработки, диаметр Doт транспортируемого в зону обработки лазерного луча, измеряют диаметр D01 лазерного луча на входе в оптическую стабилизирующую систему и исходя из соотношения диаметра Dот транспортируемого лазерного и диаметра D01 определяют кратность оптической системы K=Doт/D01, подбирают геометрические характеристики ее оптических элементов, устанавлявают оптическую стабилизирующую систему на оптической оси и изменяя расстояния между оптическими элементами формируют и стабилизируют диаметр Dот лазерного луча и транспортируют его в зону обработки (ЕР 0723834, 31.07.1996).

Задачей предлагаемого технического решения является обеспечение стабильного значения геометрических параметров лазерного луча на заданном расстоянии для транспортировки и фокусировки лазерного луча в дальней зоне с неизменным положением фокального пятна по обрабатываемой поверхности.

Поставленная задача достигается тем, что твердотельный лазер по первому варианту, включающий излучатель, систему зеркал и оптическую стабилизирующую систему на оптической оси, соотношение расстояний между излучателем и оптической стабилизирующей системой и оптической стабилизирующей системой и выходом из зоны обработки составляет (0,8-1,2):(10-30).

Во втором варианте исполнения твердотельного лазера, включающий излучатель, систему зеркал и оптическую стабилизирующую систему на оптической оси, оптическая стабилизирующая система выполнена трехэлементной из последовательно расположенных вдоль оси лазера двояковогнутой и двух плосковыпуклых линз, причем первая из них рассеивающая, а вторая и третья - собирающие длиннофокусные, а расстояния между двояковогнутой и первой плосковыпуклой и первой плосковыпуклой и второй плосковыпуклой находятся в пределах (1,2-1,7):(1,1-1,6).

Заявляемое техническое решение поясняется чертежами, на фиг.1 изображена схема транспортировки лазерного луча в зону обработки; на фиг.2 показано распределение энергии лазерного излучения в пространстве без стабилизирующей системы; на фиг.3 -распределение энергии лазерного излучения в пространстве со стабилизирующей системой; на фиг.4 - заявляемая стабилизирующая система.

Лазер (фиг.1) состоит из излучателя 1, оптической стабилизирующей системы 2 и рабочей зоны 3, в которой лазерный луч перемещается с помощью системы зеркал 4-6.

Оптическая стабилизирующая система лазерного луча расположена между излучателем 1 и рабочей зоной 3 на оптической оси 7 системы (излучателя и стабилизирующей системы) на минимально конструктивно возможном расстоянии и обеспечивает стабильное неизменное значение диаметра лазерного луча, определенного технологическими задачами, на заданном расстоянии, что позволяет транспортировать и фокусировать лазерный луч с неизменным положением фокального пятна вдоль обрабатываемой поверхности.

Стабилизирующая система лазерного луча (как один из вариантов исполнения) представляет собой систему из трех последовательно расположенных вдоль оси 7 лазера оптических элементов: двояковогнутой 8 и двух плосковыпуклых линз 9 и 10, причем первая из них рассеивающая, а вторая и третья - собирающие длиннофокусные. Двояковогнутая линза 8 рассеивает лазерный луч, первая плосковыпуклая линза 9 приближает луч к оптической оси 7 стабилизирующей системы, а вторая плосковыпуклая линза 10 стабилизирует диаметр луча. Расстояния между двояковогнутой 8 и первой плосковыпуклой 9 и второй плосковыпуклой 10 определяются из пределов а:в=(1,2-1,7):(1,1-1,6) по ходу прохождения лазерного луча.

Транспортировка лазерного луча твердотельного лазера осуществляют следующим образом.

Предварительно определяют, в соответствии с конструкцией лазерных систем и технологическими требованиями, расстояние L1, на котором конструктивно возможно расположить оптическую стабилизирующую систему, расстояние L, на которое необходимо транспортировать лазерный луч для осуществления технологических операций в зоне обработки, диаметр Dот транспортируемого лазерного луча, размер которого обеспечивают стабильным на расстоянии Lот для осуществления технологических операций и диаметр лазерного луча D01, с которым луч приходит к оптической стабилизирующей системе.

Стабильность и передачу лазерного луча диаметром Dот обеспечивают оптической стабилизирующей системой.

Затем, исходя из соотношения диаметра Doт лазерного луча и Do1, определяют кратность оптической системы К=Doт/Do1 и геометрические характеристики оптических элементов этой системы. Диаметр Dот лазерного луча формируют и стабилизируют путем изменения расстояний между оптическими элементами (линзами) по ходу прохождения лазерного луча с последующим транспортированием его в зону обработки.

При использовании трехэлементной оптической системы формирование, стабилизация и транспортировка лазерного луча заданного размера и на заданное расстояние осуществляют посредством подбора расстояний между двояковогнутой и первой плосковыпуклой линзой “а” и первой и второй плосковыпуклой линзами “в”, исходя из соотношения а:в=(1,2-1,7):(1,1-1,6).

Транспортировка со стабилизированным лазерным лучом и оптическая система стабилизации апробированы в изделиях МЛТИ-1000 (модуль лазерный технологический, мощностью 1000 Вт) и МЛТ-500 (модуль лазерный технологический импульсный, мощностью 1000 Вт).

В лазере МЛТИ-1000 с угловой расходимостью 17 мрад расстояния между двояковогнутой и первой плосковыпуклой и первой плосковыпуклой и второй плосковыпуклой составляют а=40 мм и в=30 мм соответственно, при этом фокус двояковогнутой линзы был выбран -70 мм, а фокусы плосковыпуклых линз +270 мм.

В лазере МЛТ-500 с угловой расходимостью 13 мрад расстояния между двояковогнутой и первой плосковыпуклой и первой плосковыпуклой и второй плосковыпуклой составляют а=60 мм и в=40 мм соответственно, при этом фокус двояковогнутой линзы был выбран -70 мм, а фокусы плосковыпуклых линз +270 мм.

Похожие патенты RU2243072C2

название год авторы номер документа
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР 2001
  • Щеглов С.И.
  • Чистый И.Л.
  • Козиков Н.А.
  • Рогов А.Н.
  • Слободянюк В.С.
RU2196374C2
ЛАЗЕРНОЕ УСТРОЙСТВО МАЛОМОДОВОГО ИЗЛУЧЕНИЯ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛА 1992
  • Кравец А.Н.
RU2016089C1
ОПТИЧЕСКАЯ СИСТЕМА ДЛЯ ПОЛУПРОВОДНИКОВЫХ ЛАЗЕРОВ 2008
  • Батюшков Валентин Вениаминович
  • Васильева Ирина Владимировна
  • Красковский Андрей Сергеевич
  • Литвяков Сергей Борисович
  • Покрышкин Владимир Иванович
  • Руховец Владимир Васильевич
  • Титовец Сергей Николаевич
RU2390811C1
УСТРОЙСТВО ДЛЯ ФОКУСИРОВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2009
  • Сироткин Олег Сергеевич
  • Блинков Владимир Викторович
  • Кондратюк Дмитрий Иванович
RU2413265C2
ЛАЗЕРНОЕ ГЕНЕРАТОРНО-УСИЛИТЕЛЬНОЕ УСТРОЙСТВО ОДНОМОДОВОГО ИЗЛУЧЕНИЯ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛОВ 1993
  • Кравец А.Н.
  • Кравец С.А.
RU2044065C1
Способ и устройство для лазерной резки материалов 2016
  • Гликин Лев Семенович
RU2634338C1
ЛАЗЕРНЫЙ ОСВЕТИТЕЛЬ ДЛЯ АКТИВНО-ИМПУЛЬСНЫХ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ (ВАРИАНТЫ) 2008
  • Хацевич Татьяна Николаевна
  • Косолапов Геннадий Иванович
RU2420769C2
ЛАЗЕРНАЯ ФОКУСИРУЮЩАЯ ГОЛОВКА С ЛИНЗАМИ ИЗ ZnS, ИМЕЮЩИМИ ТОЛЩИНУ ПО КРАЯМ, ПО МЕНЬШЕЙ МЕРЕ, 5 мм, И УСТАНОВКА И СПОСОБ ЛАЗЕРНОЙ РЕЗКИ С ИСПОЛЬЗОВАНИЕМ ОДНОЙ ТАКОЙ ФОКУСИРУЮЩЕЙ ГОЛОВКИ 2010
  • Бриан,Франсис
  • Баллерини,Гайя
  • Дебекер,Изабелль
  • Жуанно,Тома
  • Маазауи,Аким
  • Верна,Эрик
RU2553152C2
Офтальмохирургическая рефракционная твердотельная лазерная система 2018
  • Тихов Александр Викторович
RU2749346C1
ИЗЛУЧАТЕЛЬ ЛАЗЕРА 2018
  • Гладилин Александр Александрович
  • Янусов Михаил Юрьевич
  • Бызов Роман Андреевич
RU2682560C1

Иллюстрации к изобретению RU 2 243 072 C2

Реферат патента 2004 года ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР (ВАРИАНТЫ)

Изобретение относится к области лазерной техники и может быть использовано для формирования пучка Nd: YAG лазеров с расходимостью 10-20 мрад. Лазер включает излучатель, систему зеркал и оптическую стабилизирующую систему на оптической оси излучателя. По первому варианту расстояние между излучателем и оптической стабилизирующей системой и оптической стабилизирующей системой и выходом из зоны обработки выбираются из соотношения (0,8-1,2):(10-20) системой. По второму варианту оптическая стабилизирующая система выполнена трехэлементной из последовательно расположенных вдоль оси лазера рассеивающей двояковогнутой и двух рассеивающих длиннофокусных плосковыпуклых линз. Соотношение расстояний между двояковогнутой и первой плосковогнутой и первой плосковогнутой и второй плосковогнутой линзами находятся в пределах (1,2-1,7):(1,1-1,6). Обеспечено повышение стабильности геометрических параметров лазерного луча на обрабатываемой поверхности с неизменным положением фокального пятна. 2 с.п. ф-лы. 4 ил.

Формула изобретения RU 2 243 072 C2

1. Твердотельный лазер, включающий излучатель, систему зеркал и оптическую стабилизирующую систему на оптической оси, отличающийся тем, что расстояния между излучателем и оптической стабилизирующей системой и оптической стабилизирующей системой и выходом из зоны обработки выбираются от соотношения (0,8-1,2):(10-30).2. Твердотельный лазер, включающий излучатель, систему зеркал и оптическую стабилизирующую систему на оптической оси, отличающийся тем, что оптическая стабилизирующая система выполнена трехэлементной из последовательно расположенных вдоль оси лазера двояковогнутой и двух плосковыпуклых линз, причем первая из них рассеивающая, а вторая и третья - собирающие длиннофокусные, а расстояния между двояковогнутой и первой плосковыпуклой и первой плосковыпуклой и второй плосковыпуклой находятся в пределах (1,2-1,7):(1,1-1,6).

Документы, цитированные в отчете о поиске Патент 2004 года RU2243072C2

ЕР 0723834 А1, 31.07.1996
US 3733404 А, 30.06.1972
US 5397686 А, 14.03.1995
Способ управления процесса лазерной резки 1991
  • Бродягин Владимир Николаевич
  • Григорьянц Александр Григорьевич
  • Ковалев Вадим Викторович
SU1815086A1

RU 2 243 072 C2

Авторы

Усов С.В.

Минаев И.В.

Зверев Ю.Б.

Зарубин М.Ю.

Грашкин И.Л.

Буданов Н.А.

Даты

2004-12-27Публикация

2002-04-08Подача