ТЕПЛОИЗОЛИРОВАННАЯ ТРУБА (ВАРИАНТЫ) Российский патент 2005 года по МПК E21B17/00 F16L59/65 

Описание патента на изобретение RU2244093C2

Изобретение относится к нефтяной промышленности, в частности к добыче нефти термическими методами, но может быть использовано и в других отраслях народного хозяйства в сборно-разборных трубопроводах для транспортировки теплоносителей.

Известен трубчатый узел для транспортировки текучей среды вниз с обеспечением тепловой изоляции ее от окружающей среды. Указанный узел содержит две смежные, расположенные в вертикальном направлении встык трубные секции. Каждая из этих секций содержит внутреннюю трубу для транспортировки текучей среды, вокруг которой расположена наружная труба, отделенная от нее кольцевой полостью. Наружная труба смещена в продольном направлении относительно внутренней трубы, так что первый конец внутренней трубы выступает из первого конца наружной трубы, а ее второй конец расположен внутри второго конца наружной трубы. Элемент в форме усеченного конуса соединяет каждую пару соответствующих смещенных относительно друг друга в продольном направлении концов труб в каждой из трубных секций. Пара соединительных элементов в каждой из трубных секций предназначена для поддержания относительного кольцевого зазора между внутренней и наружной трубами и для обеспечения герметичности кольцевой полости между ними. Каждый соединительный элемент имеет коническую поверхность, расположенную напротив соответствующей поверхности смежной трубной секции. Между этими расположенными напротив друг друга поверхностями образуется коническая полость [1] (Патент США №4538834, F 16 L 17/00, оп. 1985 г.).

Недостатками известного трубчатого узла для транспортировки текучей среды с обеспечением тепловой изоляции ее от окружающей среды являются дорогостоящий ремонт и значительные потери тепла через коническую полость в соединительном элементе, в которой существует прямой контакт текучей среды с соединительным элементом и через него с окружающей средой. Конструкция трубчатого узла исключает возможность ремонта трубных секций методом простой перенарезки резьбы, так как в этом случае перед перенарезкой резьбы необходимо срезать старый элемент в форме усеченного конуса и заменить его новым с повторением целого ряда технологических операций, предусмотренных в цикле изготовления новых трубных секций.

Наиболее близкой к заявляемой теплоизолированной трубе является теплоизолированная колонна, включающая внутреннюю трубу с расположенной на ней многослойной экранной изоляцией, наружную трубу и муфту; внутренняя труба выполнена на цельной с высаженными профилированными концами, наружная труба перед монтажом сжата вдоль оси на 9-12 мм, имеет на концах корпусно-упорную резьбу и снабжена седлом и клапаном, равноудаленным от концов трубы и после герметизации седла обваренным вакуумно-плотным швом; внутренняя и наружная трубы выполнены из одного материала и по торцам обварены вакуумно-плотными швами; на многослойной экранной изоляции размещены центрирующие кольца, между слоями многослойной экранной изоляции размещен газопоглотитель; в межтрубном пространстве создан вакуум 10-4-10-3 мм рт.ст., при этом муфта навернута на наружные трубы, а уплотнительная втулка снабжена канавкой и поджимает профилированные концы внутренней трубы к наружной трубе [2]. (Патент РФ №2129202, Е 21 В 17/00, оп. 1999 г.).

Недостатком известной теплоизолированной колонны является дороговизна ремонта теплоизолированных труб.

Циклический характер воздействия теплоносителями на нефтяные пласты (особенно при теплоциклических обработках) вызывает необходимость частого подъема - спуска теплоизолированной колонны с развинчиванием и свинчиванием резьбовых соединений каждой трубы, что, естественно, приводит к износу, нарушению этих соединений и, как следствие, потребности восстановительного ремонта резьбовых соединений. Такой ремонт проводится путем отрезания части изношенной резьбы и нарезания новой резьбы за счет укорачивания самой трубы. В известной теплоизолированной трубе внутренняя и наружная трубы обварены вакуумно-плотными швами по торцам и поэтому для их ремонта требуется отрезание и отделение внутренней трубы от наружной с последующим полным комплексом работ по изготовлению, теплоизоляции и сборки реставрированной теплоизолированной трубы, что сопряжено со значительными дополнительными затратами, соизмеримыми с таковыми по изготовлению новой теплоизолированной трубы.

Задачей настоящего изобретения является значительное снижение эксплуатационных затрат и повышение эффективности работы теплоизолированной колонны за счет увеличения срока службы путем создания ремонтно-способной теплоизолированной трубы.

Сущность настоящего изобретения заключается в том, что в известной теплоизолированной трубе, включающей внутреннюю и наружную трубы, расположенные коаксиально с образованием кольцевого пространства между ними, причем кольцевое пространство герметизировано на концах вакуумно-плотными швами, в нем размещена теплоизоляция и создан вакуум, на обоих концах наружной трубы нарезана резьба, на один конец наружной трубы навернута муфта с изолирующей втулкой, согласно изобретению вакуумно-плотные швы выполнены на одинаковых расстояниях от торцов наружной трубы, рассчитываемых по формуле:

L=К• β , где

L - расстояние между вакуумно-плотным швом и торцом наружной трубы, мм;

К - количество прогнозируемых ремонтов резьбы теплоизолированной трубы;

β - величина укорочения теплоизолированной трубы при разовом ремонте резьбы, мм (зависит в общем случае от типа резьбы, угла наклона, шага, высоты исходного профиля резьбы и степени ее износа).

С учетом того, что степень износа резьбы противоположных концов теплоизолированной трубы различна, т.е. резьба с муфтовой стороны трубы изнашивается и повреждается меньше и реже, чем с ниппельной, соответственно обусловливается различная потребность в ремонте этих резьб. В этом случае согласно изобретению вакуумно-плотные швы выполнены на разных расстояниях от торцов наружной трубы, рассчитываемых со стороны муфты теплоизолированной трубы по формуле:

Lммβ, где

Lм - расстояние между вакуумно-плотным швом и торцом муфтового конца наружной трубы, мм;

Км - количество прогнозируемых ремонтов резьбы муфтового конца теплоизолированной трубы;

β - величина укорочения теплоизолированной трубы при разовом ремонте резьбы, мм;

а со стороны ниппеля - по формуле:

Lннβ,где

Lн - расстояние между вакуумно-плотным швом и торцом наружной трубы с ниппельного конца теплоизолированной трубы, мм;

Кн - количество прогнозируемых ремонтов резьбы ниппельного конца теплоизолированной трубы, причем Кмн.

На чертеже представлена предлагаемая теплоизолированная труба в разрезе. Теплоизолированная труба включает наружную трубу 1, внутреннюю трубу 2, расположенные коаксиально с образованием кольцевого пространства 3 между ними.

Внутренняя труба 2 соединена с наружной 1 вакуумно-плотными сварными швами 4 на расстояниях L (Lм и Lн - на муфтовом или ниппельном концах трубы 1 соответственно). Соосность внутренней трубы 2 относительно наружной трубы 1 обеспечивается центраторами 5. В загерметизированном кольцевом пространстве 3 размещена многослойная теплоизоляция 6. В трубе 1 выполнено отверстие 7 под клапан, который после создания через него вакуума заваривается вакуумно-плотным швом. На обоих концах наружной трубы 1 нарезается резьба 8. С одной стороны на смазанную резьбу с заданным моментом навинчивается муфта 9, во внутрь которой вставляется специальная изолирующая втулка 10.

Собранные в заводских условиях теплоизолированные трубы маркируются, консервируются, упаковываются и отгружаются заказчикам на нефтедобывающие предприятия.

В дальнейшем описанные теплоизолированные трубы собираются в колонну путем свинчивания друг с другом с заданным крутящим моментом на устье скважины, оснащаются специальным внутрискважинным оборудованием и спускаются на необходимую глубину. По собранной теплоизолированной колонне подается теплоноситель (пар, горячая вода с температурой до 350° С при давлении до 16,0 МПа), поступающий непосредственно в обрабатываемый нефтяной пласт. Продолжительность теплового воздействия может длиться от нескольких суток до нескольких месяцев и даже лет в зависимости от потребности нефтяных пластов, предусмотренной технологическим проектом разработки конкретного нефтяного месторождения. В процессе нагнетания теплоносителя теплоизолированная колонна должна обеспечивать герметичность соединений и минимальные теплопотери, обусловленные технической характеристикой теплоизолированных труб.

В период эксплуатации теплоизолированные трубы подвержены воздействию многочисленных термоциклических нагрузок (нагрев-охлаждение) и частых как технологически обусловленных, так и непредвиденных спуско-подъемных операций со свинчиванием и развинчиванием резьбовых соединений. Такой режим эксплуатации приводит к износу и повреждениям резьбовых соединений теплоизолированных труб, которые не могут быть использованы для последующего нагнетания теплоносителя. Для известной теплоизолированной колонны [2] в этом случае, как рассматривалось ранее, требуется капитальный дорогостоящий ремонт всей теплоизолированной трубы, а для предлагаемой конструкции теплоизолированной трубы достаточно выполнить только подтарцовку наружной трубы и обновление резьбового соединения. При этом длина реставрируемого участка трубы будет зависеть от типа резьбы, угла наклона, шага, высоты исходного профиля и ее износа.

Пример использования теплоизолированных труб диаметром 114,3 мм (диаметр наружной трубы) с соединительными резьбами типа ОТТМ по ГОСТ 25575-83.

Для данного примера расстояние от вакуумно-плотных швов до торцов наружной трубы рассчитывается по формуле:

L=K• β

и при β =10,2 мм для 3 ремонтов составляет 30,6 мм, а для 5 ремонтов - 51 мм.

В нефтепромысловой практике при работе с трубами в скважинах при бурении, добыче нефти, нагнетании различных агентов и проведении спуско-подъемных операций с трубами наибольшему износу и повреждениям подвержены ниппельные резьбовые концы труб, собираемые и разбираемые непосредственно на устье скважин. Для теплоизолированных труб ниппельные резьбовые концы в среднем в 5-10 раз более подвержены износу и повреждению, нежели собранные с муфтами. Поэтому целесообразно при изготовлении теплоизолированных труб расстояние между вакуумно-плотным швом и торцом наружной трубы с муфтовой стороны делать меньше, чем с ниппельной. Для этого случая в нашем примере расстояние от вакуумно-плотного шва до торца наружной трубы с муфтовой стороны рассчитывается по формуле:

Lммβ

и при прогнозируемом 1 ремонте составляет 10,2 мм, а с ниппельной стороны - рассчитывается по формуле:

Lннβ

и при прогнозируемых 3 ремонтах составляет 30,6 мм и 5 ремонтах - 51 мм.

Преимущества предложенной теплоизолированной трубы состоят в том, что значительно увеличивается срок ее эффективной работы (как минимум, в три раза) за счет малозатратного профилактического ремонта и восстановления износа и нарушений резьбы вместо капитального и дорогостоящего ремонта для известных конструкций.

За счет снижения эксплуатационных затрат на ремонт расширяется сфера применения теплоизолированных труб и, в частности, область рентабельного термического воздействия на нефтяные залежи с высоковязкими, трудноизвлекаемыми нефтями, а также возможность применения таких теплоизолированных труб в других отраслях народного хозяйства для транспортировки теплоносителей по мобильным сборно-разборным трубопроводам.

Похожие патенты RU2244093C2

название год авторы номер документа
ТЕПЛОИЗОЛИРОВАННАЯ ТРУБА 2002
  • Щапин И.В.
  • Щапин В.М.
  • Коршунов В.Н.
  • Фельдман И.М.
RU2242667C2
ТЕПЛОИЗОЛИРОВАННАЯ ТРУБА 2003
  • Фельдман И.М.
  • Щапин В.М.
  • Щапин И.В.
  • Коршунов В.Н.
RU2243348C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОИЗОЛИРОВАННОЙ ТРУБЫ 2014
  • Дураков Василий Григорьевич
RU2588927C2
Теплоизолированная труба 2020
  • Просвиров Сергей Григорьевич
RU2742024C1
ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 1997
  • Кудинов В.И.
  • Богомольный Е.И.
  • Завьялов М.П.
  • Багиров Рзакули Рашид Оглы
  • Просвирин А.А.
  • Марченко Л.Г.
RU2129202C1
ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 2004
  • Багиров Рзакули Рашид Оглы
  • Завьялов Михаил Петрович
  • Кулешов Эдуар Владимирович
  • Курбанов Вагиф Вели Оглы
  • Просвирин Александр Александрович
RU2307913C2
Сбалансированное резьбовое соединение бурильной колонны 2022
  • Гетьман Александр Владимирович
  • Трифонов Юрий Алексеевич
RU2783935C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОИЗОЛИРОВАННОЙ ТРУБЫ 2011
  • Шакаров Сахиб Али Оглы
RU2473004C1
ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 2008
  • Емельянов Вадим Викторович
  • Коршунов Валерий Николаевич
  • Костромин Валерий Сергеевич
  • Рябоконь Александр Александрович
  • Чернухин Владимир Иванович
RU2375547C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЕКЦИИ ТЕПЛОИЗОЛИРОВАННОЙ КОЛОННЫ 2012
  • Четвериков Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Грехов Александр Игоревич
  • Тихонцева Надежда Тахировна
  • Лефлер Михаил Ноехович
  • Пышминцев Игорь Юрьевич
  • Кузнецов Владимир Иванович
  • Копылов Петр Леонидович
  • Кривошеев Андрей Александрович
  • Чернухин Владимир Иванович
  • Рекин Сергей Александрович
  • Щербаков Борис Юрьевич
  • Быков Аркадий Петрович
  • Емельянов Юрий Федорович
  • Черных Илья Викторович
RU2500874C2

Реферат патента 2005 года ТЕПЛОИЗОЛИРОВАННАЯ ТРУБА (ВАРИАНТЫ)

Изобретение относится к нефтяной промышленности, в частности к добыче нефти термическими методами в сборно-разборных трубопроводах. Теплоизолированная труба включает внутреннюю и наружную трубы, расположенные коаксиально с образованием кольцевого пространства между ними. Кольцевое пространство герметизировано вакуумно-плотными швами, в нем размещена теплоизоляция и создан вакуум, на обоих концах наружной трубы нарезана резьба, на один из концов ее навинчена муфта с изолирующей втулкой. Вакуумно-плотные швы выполнены на одинаковых от торцов наружной трубы расстояниях, рассчитываемых по формуле L=K· β , где L - расстояние между вакуумно-плотным швом и торцом наружной трубы, мм; К - количество прогнозируемых ремонтов резьб теплоизолированной трубы; β - величина укорочения теплоизолированной трубы при разовом ремонте резьбы, мм. Также описан другой вариант теплоизолированной трубы, в которой вакуумно-плотные швы выполнены на разных расстояниях от торцов наружной трубы. Расстояние с муфтовой стороны рассчитывается по формуле: Lмм·β, где Lм - расстояние между вакуумно-плотным швом и торцом муфтового конца наружной трубы, мм; Км - количество прогнозируемых ремонтов резьбы муфтового конца теплоизолированной трубы; β - величина укорочения теплоизолированной трубы при разовом ремонте резьбы, мм; а с ниппельной стороны расстояние рассчитывается по формуле: Lнн·β, где Lн - расстояние между вакуумно-плотным швом и торцом ниппельного конца наружной трубы, мм; Кн - количество прогнозируемых ремонтов резьбы ниппельного конца теплоизолированной трубы, причем Кмн. Повышается эффективность работы теплоизолированных труб. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 244 093 C2

1. Теплоизолированная труба, включающая внутреннюю и наружную трубы, расположенные коаксиально с образованием кольцевого пространства между ними, причем кольцевое пространство герметизировано вакуумно-плотными швами, в нем размещена теплоизоляция и создан вакуум, на обоих концах наружной трубы нарезана резьба, на один из концов ее навинчена муфта с изолирующей втулкой, отличающаяся тем, что вакуумно-плотные швы выполнены на одинаковых от торцов наружной трубы расстояниях, рассчитываемых по формуле

L=K· β ,

где L - расстояние между вакуумно-плотным швом и торцом наружной трубы, мм;

К - количество прогнозируемых ремонтов резьб теплоизолированной трубы;

β - величина укорочения теплоизолированной трубы при разовом ремонте резьбы, мм.

2. Теплоизолированная труба, включающая внутреннюю и наружную трубы, расположенные коаксиально с образованием кольцевого пространства между ними, причем кольцевое пространство герметизировано вакуумно-плотными швами, в нем размещена теплоизоляция и создан вакуум, на обоих концах наружной трубы нарезана резьба, на один из концов ее навинчена муфта с изолирующей втулкой, отличающаяся тем, что вакуумно-плотные швы выполнены на разных расстояниях от торцов наружной трубы, причем расстояние с муфтовой стороны рассчитывается по формуле

Lмм·β,

где LM - расстояние между вакуумно-плотным швом и торцом муфтового конца наружной трубы, мм;

Км - количество прогнозируемых ремонтов резьбы муфтового конца теплоизолированной трубы;

β - величина укорочения теплоизолированной трубы при разовом ремонте резьбы, мм;

а с ниппельной стороны расстояние рассчитывается по формуле

Lнн·β,

где Lн - расстояние между вакуумно-плотным швом и торцом ниппельного конца наружной трубы, мм;

Кн - количество прогнозируемых ремонтов резьбы ниппельного конца теплоизолированной трубы, причем Кмн.

Документы, цитированные в отчете о поиске Патент 2005 года RU2244093C2

ТЕПЛОИЗОЛИРОВАННАЯ КОЛОННА 1997
  • Кудинов В.И.
  • Богомольный Е.И.
  • Завьялов М.П.
  • Багиров Рзакули Рашид Оглы
  • Просвирин А.А.
  • Марченко Л.Г.
RU2129202C1
Теплоизолированная колонна 1989
  • Калбазов Владимир Гаврилович
  • Сарычев Владимир Александрович
SU1696677A1
Теплоизолированная колонна для нагнетания теплоносителя в пласт 1987
  • Артемьев Михаил Васильевич
  • Арзамасцев Филипп Григорьевич
SU1506084A1
СОЕДИНЕНИЕ ТРУБ 1989
  • Гуркин Юрий Иванович
RU2046244C1
СОЕДИНЕНИЕ ТРУБ 1989
  • Гуркин Юрий Иванович
RU2046245C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ 1999
  • Нуретдинов Я.К.
  • Кудашев П.М.
  • Нигматуллин Р.К.
  • Иванов В.А.
  • Ипполитов А.П.
  • Кузнецова Г.П.
RU2165001C2

RU 2 244 093 C2

Авторы

Фельдман И.М.

Щапин В.М.

Коршунов В.Н.

Волков В.М.

Жуковский Н.Н.

Гамин И.М.

Даты

2005-01-10Публикация

2002-04-15Подача