Изобретение относится к черной металлургии, а конкретно к области производства стали, и может быть использовано при осуществлении раскисления и легирования стали с применением карбида кремния.
Известен способ раскисления и легирования стали с применением для раскисления металла металлоабразивных отходов, т.е. отходов шлифования, содержащих как частицы металла, так и частицы абразива - карбида кремния (далее SiC) [1]. Согласно этому способу на шлак периода расплавления или окисления присаживают окисленную металлическую стружку (или пыль) в смеси с SiC в соотношении 40...85 вес.% стружки (пыли) и 15...60 вес.% SiC в количестве 1...40 кг/т расплава.
Указанный способ обладает существенным недостатком - низкой степенью усвоения SiC, т.к. карбид кремния расходуется преимущественно на раскисление шлака. В металле степень усвоения кремния составляет в среднем 33%.
Известен также способ раскисления и легирования стали, изложенный в [2]. Согласно этому способу SiC вдувают в расплав в потоке специально для этого подаваемого воздуха, перед вводом в печь ферросплавов или одновременно с вводом ферросплавов.
Данный способ позволяет повысить степень усвоения кремния из SiC. Согласно приведенным в работе [2] данным средняя степень усвоения кремния из SiC при значительных колебаниях от 30 до 45% в среднем составила 40,7%.
Недостатком этого способа является недостаточная и нестабильная степень усвоения кремния в процессе раскисления. В процессе раскисления содержание FeO в шлаке снижалось на 6,5% - т.е. основная часть SiC израсходована на раскисление шлака, а не металла. Высокий расход карбида кремния повышает себестоимость стали. Нестабильность усвоения кремния не позволяет устойчиво получать заданный химический состав металла.
Второй недостаток данного способа заключается в необходимости достаточно сложного оборудования для вдувания SiC.
Наиболее близким к заявляемому решению по технической сущности и достигаемому результату является способ раскисления и легирования стали, включающий выпуск расплава в ковш, ввод в расплав по ходу выпуска раскислителей и легирующих добавок, обладающих различным сродством к кислороду, и ввод материала, содержащего карбид кремния [3]. При введении раскисляющих и легирующих добавок в ковш в период заполнения 1/20-1/3 высоты ковша и в период заполнения 1/2-3/4 объема ковша, как это предусмотрено в решении [3], практически полностью устраняется концентрационный градиент по содержанию раскислителей, а следовательно, снижается угар и уменьшается содержание неметаллических включений.
Однако в период ввода ферросплавов имеет место локальное падение температуры в местах их ввода. Ввод же алюминия в эти зоны для обеспечения экзотермических реакций, компенсирующих тепловые потери, затруднен. Это затрудняет растворение ферросплавов, а следовательно, вызывает неравномерное распределение окисленности и температуры металла в ковше, что в свою очередь приводит к нестабильности усвоения кремния и неустойчивости получения заданного химического состава.
Задачей данного изобретения является создание эффективного способа раскисления и легирования стали с использованием карбида кремния.
Ожидаемый технический результат заключается в снижении расхода карбида кремния в процессе раскисления и легирования стали за счет увеличения и обеспечения стабильности степени усвоения металлом кремния из карбида кремния.
Технический результат достигается тем, что в известном способе раскисления и легирования стали, включающем выпуск расплава в ковш, ввод в расплав по ходу выпуска раскислителей и легирующих добавок, обладающих различным сродством к кислороду, и ввод материала, содержащего карбид кремния, по настоящему изобретению раскислители и легирующие добавки, обладающие сродством к кислороду, большим, чем у углерода, вводят в ковш при наполнении его на 8-12% объема, остальные раскислители и легирующие - при наполнении ковша на 50-60% объема, а материал, содержащий карбид кремния, - при наполнении 75-80% объема ковша.
По предложению в качестве материала, содержащего карбид кремния, можно использовать материал с содержанием алюминия, не превышающим величины, устанавливаемой в зависимости от расхода карбида кремния по выражению:
Alsic%<0,44-0,018Gsic, где:
Alsic - содержание алюминия в материале, содержащем карбид кремния,
Gsic - расход карбида кремния, кг/т стали.
При введении раскислителей и легирующих добавок в указанном режиме в зависимости от величины наполнения ковша возможно достигнуть наилучших результатов по усвоению кремния из карбида кремния.
Подача раскислителей и легирующих добавок при наполнении 8-12% объема ковша, обладающих сродством к кислороду, большим, чем у углерода (силовых раскислителей), таких как титан, алюминий, кальций и других, подаваемых в свободном виде или в виде сплавов, обеспечивает снятие температурного градиента и избыточной окисленности расплава.
Более ранняя присадка: <8% объема ковша, не является необходимой, поскольку на этом уровне имеет место понижение температуры первых порций металла за счет днища ковша, а при более поздней присадки (при наполнении ковша более 12% объема) раскислители не успевают прореагировать до ввода основной массы ферросплавов.
При более ранней присадке основной массы ферросплавов (при наполнении ковша менее, чем на 50%) степень усвоения вносимых ими элементов снижается, т.к. не успевают прореагировать сильные раскислители, при более поздней присадке (при наполнения ковша более 60%) основная масса ферросплавов не успевает полностью расплавиться и раствориться до момента ввода SiC.
В качестве материала, содержащего карбид кремния, используют бой футеровки алюминиевых электролизеров, шлак производства алюмокремниевых сплавов, пыль абразивного производства и другие.
Можно присаживать и чистый карбид кремния. Однако последний разлагается при высоких температурах с обильным газовыделением, способствующим циркуляции металла и очищению его от неметаллических включений.
При присадке карбида кремния при наполнении ковша менее, чем на 75%, не успевает прореагировать основная масса ферросплавов, более поздний ввод SiC (при наполнения ковша более 80% приводит к тому, что SiC не успевает увлечься струей металла в его толщу и часть SiC остается на поверхности металла и, в результате, окисляется при контакте с атмосферой).
К моменту ввода в ковш карбида кремния (75...80% наполнения ковша) в результате действия сначала сильных раскислителей, обладающих максимальным сродством к кислороду, и затем основной массы ферросплавов содержание кислорода в металле уменьшается, что является одним из факторов, обеспечивающих высокую степень усвоения кремния и углерода из SiC.
Вторым важным фактором, обеспечивающим хорошее усвоение кремния и углерода, является отсутствие на поверхности жидкого металла большого количества шлака, на раскисление которого уходит значительная часть кремния.
Алюминий, содержащийся в материале, содержащем карбид кремния в качестве примеси, является, в свою очередь, сильнодействующим раскислителем, поэтому его концентрация активно влияет на процессы, происходящие в жидком металле. Регламентация содержания алюминия в SiC обеспечивает стабильность степени усвоения кремния.
ПРИМЕР.
Сталь марки Ст.70 выплавляли в 120-тонной дуговой сталеплавильной печи.
Во время выпуска стали из печи, при поступлении в ковш 10-15 тонн металла 8-12 объема плавки, в ковш присадили 260 кг ферротитана (сильнодействующий раскислитель), при поступлении в ковш 65 т металла (55% объема плавки) присадили 1630 кг силикомарганца (ферросплав), при поступлении в ковш 90 т металла (75% объема плавки) - 245 кг SiC (карбид кремния).
В конце выпуска после наполнения ковша осуществили отсечку печного шлака (произвели эркерный выпуск).
Использовался материал, содержащий карбид кремния с содержанием алюминия 0,02% (допустимо до 0,403).
Взятые из ковша пробы показали, что при использовании данного способа средняя степень усвоения кремния из карбида кремния составила 53,8%, средняя степень усвоения углерода - 79,4%.
Для сравнения в той же печи были проведены несколько плавок с различными условиями присадки материалов для раскисления и легирования, что позволило оценить диапазон применения заявляемого способа и влияние различных параметров процесса на конечный результат:
1. Сильнодействующие раскислители вводились ранее, чем предложено в изобретении, в соответствии с изобретением и позднее, чем оговорено в изобретении (при наполнении металлом объема ковша на 7%, 8%, 10%, 12% и 13% соответственно).
2. При каждом из вышеприведенных условий ввода сильнодействующих раскислителей вводили карбид кремния (SiC) ранее, чем предложено в изобретении, в соответствии с изобретением и позднее, чем оговорено в изобретении (74%, 75%, 77%, 80%, 81% объема ковша соответственно).
Результаты опытных плавок - степень усвоения расплавленным металлом кремния из карбида кремния при различных условиях введения сильнодействующих раскислителей и карбида кремния - приведены в таблице.
Как видно из таблицы, наилучший результат по усвоению кремния из карбида кремния достигается при подаче сильнодействующих раскислителей при заполнении ковша на 8-12% и подаче SiC при наполнении ковша на 75-80% его объема.
Использование изобретения позволяет уменьшить угары марганца на 3%, кремния на 5% и титана - 18%, а также повысить степень усвоения Si из SiC на 13%.
Литература:
1. А.С. СССР №346344, МПК7 С 21 С 5/52, 1972.
2. Переверткин В.Н. и др. “Предварительное раскисление стали вдуванием карбида кремния”, // Сталь, 1992, №9. С.25-26.
3. А.С. СССР №1154341. МПК7 С 21 С 7/06, 1985.
название | год | авторы | номер документа |
---|---|---|---|
Способ производства титансодержащей стали | 1990 |
|
SU1786103A1 |
СПОСОБ ОБРАБОТКИ СТАЛИ | 2006 |
|
RU2347821C2 |
Способ раскисления и легирования стали в ковше | 1983 |
|
SU1154341A1 |
Способ получения высокопрочной стали | 1979 |
|
SU857271A1 |
Способ раскисления стали | 1974 |
|
SU499323A1 |
СПОСОБ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ | 2005 |
|
RU2319751C2 |
СПОСОБ ВЫПЛАВКИ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ | 2005 |
|
RU2291203C2 |
Способ раскисления стали | 1981 |
|
SU1126613A1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДИСТОЙ СТАЛИ | 1998 |
|
RU2124569C1 |
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОЙ ТРУБНОЙ СТАЛИ | 2014 |
|
RU2574529C1 |
Изобретение относится к черной металлургии. Способ включает выпуск расплава в ковш, ввод в расплав по ходу выпуска раскислителей и легирующих добавок, обладающих различным сродством к кислороду, и ввод материала, содержащего карбид кремния. Раскислители и легирующие добавки, обладающие сродством к кислороду большим, чем у углерода, вводят в ковш при наполнении его на 8-12% объема, остальные раскислители и легирующие - при наполнении ковша на 50-60% объема, а материал, содержащий карбид кремния, - при наполнении 75-80% объема ковша. В качестве материала, содержащего карбид кремния, можно использовано бой футеровки алюминиевых электролизеров, шлак производства алюмокремниевых сплавов с содержанием алюминия в нем, не превышающим величины, устанавливаемой в зависимости от расхода карбида кремния по определенному выражению. Технический результат - снижение расхода карбида кремния в процессе раскисления и легирования стали за счет увеличения и обеспечения стабильности степени усвоения металлом кремния из карбида кремния, уменьшения угара марганца, кремния, титана. 1 з.п. ф-лы, 1 табл.
Alsic% < 0,44-0,018Gsic, где
Alsic - содержание алюминия в материале, содержащем карбид кремния,
Gsic - расход карбида кремния, кг/т стали.
Способ раскисления и легирования стали в ковше | 1983 |
|
SU1154341A1 |
СПОСОБ ЛЕГИРОВАНИЯ СТАЛИ МАРГАНЦЕМ | 2002 |
|
RU2212452C1 |
US 4581068 А, 08.04.1986 | |||
GB 20039301 А, 06.08.1980. |
Авторы
Даты
2005-01-27—Публикация
2003-10-08—Подача