FIELD: determining strength of buildings and other building structures, namely dynamic strength thereof to define their stability under the risk of natural or man-caused hazards and to work out measures to eliminate structural and material defects.
SUBSTANCE: method involves initiating vibrations of object to be tested at natural frequency by seriously applying shock pulses of low amplitude to object; measuring oscillations by sensors installed on object; summing oscillation amplitudes and determining dynamic characteristics of above object on the base of measured parameters of summary oscillations; experimental determining of surface strength value and/or bulk strength and/or reinforcing parameters of structure components and/or settlement and/or object displacement and/or tilt thereof and/or basement depth and/or surface or bulk strength of object basement and/or natural oscillation period for ground under object and/or around thereof determined from at least the first oscillation tone and/or logarithmic decrement of oscillation damping and/or subterranean water level. Oscillations are performed by impact device in at least one direction selected from directions parallel to object spatial location axes along length, width and height thereof. Natural oscillation periods determined from at least the first tone and/or logarithmic decrement of oscillation damping sensed by at least one sensor located on object and spaced maximum distance from point of oscillation application along line of oscillation propagation in above direction are compared with normalized values of above parameters defined for particular object structure and materials. If difference between measured and normalized parameters is more than metering error sensor is moved towards point of oscillation application along line of oscillation propagation in above direction up to obtaining minimal measured values of natural oscillation period. Part of object structure defined by area with maximum value of natural oscillation period and area with minimum value of natural oscillation period are experimentally investigated to expose all structure defects. Change of object acceleration along at least one spatial axis for at least one oscillation frequency value is experimentally calculated and all experimental values are taken as initial ones to perform comparison with that obtained from theoretical models calculated for a given object structure and materials to determine building and structure stability by expert judgment method. If building is erected in seismically hazardous zone relation between natural oscillation period and/or logarithmic decrement of oscillation damping in ground and object structure are taken into consideration. System for building stability determination comprises impact device assembly, electrical clock pulse generation unit, converting unit to convert oscillations into electric signal, analog-to-digital converter unit to convert electric signal; digital memory unit and control unit for digital memory unit, data input unit to input experimental and/or calculated values of surface and/or bulk strength and reinforcing parameters of structure components and/or settlement and/or object displacement and/or tilt thereof and/or basement depth and/or surface or bulk strength of object basement and/or natural oscillation period for ground under object and/or around thereof determined from at least the first oscillation tone and or subterranean water level, comparator unit to compare experimental data with normalized ones calculated for given structures and materials, composition of the ground under structure and/or near thereof and data reproduction unit. All above components are linked one to another and to another operative system units by control buses.
EFFECT: increased accuracy due to taking into consideration all factors acting upon parameter to be determined.
19 cl, 2 dwg
Authors
Dates
2005-01-27—Published
2003-04-02—Filed