СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2005 года по МПК C22C21/06 

Описание патента на изобретение RU2247168C1

Предлагаемое изобретение относится к металлургии сплавов на основе алюминия, предназначенных для изготовления катаных, прессованных и кованых полуфабрикатов, используемых в качестве конструкционного материала в сварных конструкциях изделий ответственного назначения.

Известен сплав марки 1420 (ОСТ 1.90048-77) следующего состава, мас. %:

Магний 4,5-6,0

Литий 1,8-2,3

Цирконий 0,08-0,15

Железо не более 0,2

Кремний не более 0,15

Медь не более 0,05

Титан не более 0,1

Натрий не более 0,0006

Алюминий остальное

В настоящее время детали из сплава марки 1420 применяются в авиационной и аэрокосмической технике, где необходимы малая плотность в сочетании с высокой жесткостью и прочностью. Недостатком данного сплава является низкая пластичность полуфабрикатов (катаных - в продольном, кованых - в поперечном по толщине направлении) и пониженный предел текучести (не более 28 кгс/мм2).

Известны алюминиевые сплавы с литием, которые характеризуются пониженной плотностью и высоким значением предела текучести, но обладают пониженной вязкостью разрушения и невысокой пластичностью.

Одним из таких сплавов, наиболее близким по технической сущности и достигаемому положительному эффекту, взятым за прототип, является сплав по патенту США №4584173 от 22.04.86, кл. 420-533, который имеет следующий химический состав, мас.%:

Магний 3,0-5,5

Литий 2,1-2,9

Медь 0,2-0,7,

и один или более элементов из группы, содержащей цирконий, гафний, ниобий и бор:

Цирконий 0,05-0,25

Гафний 0,10-0,50

Ниобий 0,05-0,30

Бор 0,0001-0,0005

и один или более элементов из группы

Цинк 0-2,0

Титан 0-0,5

Марганец 0-0,5

Никель 0-0,5

Хром 0-0,5

Германий 0-0,2

Алюминий остальное.

Данный сплав не обладает достаточной пластичностью основного металла и сварных соединений для получения сложных сварных конструкций типа ферм и рам.

Решаемой задачей настоящего изобретения является создание сплава с повышенными характеристиками пластичности основного металла и сварных соединений, а также свариваемостью и прочностью сварных соединений на достаточно высоком уровне, что позволит получать тонкостенные прессованные и кованые полуфабрикаты различной формы и сложные сварные конструкции.

Для решения поставленной задачи в известный сплав на основе алюминия дополнительно введены бериллий и висмут при следующем соотношении компонентов, мас.%:

Магний 4,0-5,6

Литий 1,3-1,8

Цирконий 0,08-0,15

Титан 0,05-0,1

Бор 0,0001-0,0005

Бериллий 0,001-0,01

Висмут 0,01-0,1

Алюминий остальное

Содержание магния в пределах 4,0-5,6 мас.% обеспечивает необходимый уровень прочностных характеристик и свариваемость сплава. При уменьшении содержания магния менее 4,0% значения временного сопротивления и предела текучести снижаются, повышается склонность сплава к горячим трещинам как при литье сплава, так и при сварке. При увеличении содержания магния более 5,6 мас.% технологичность и пластичность полуфабрикатов сплава снижаются.

Содержание лития выбрано в пределах 1,3-1,8 мас.% для обеспечении технологичности при деформации и получения требуемого комплекса механических свойств. При снижении содержания лития в сплаве (ниже 1,3 мас.%) уменьшается модуль упругости и повышается плотность сплава. Увеличение содержания лития выше 1,8 мас.% ухудшает технологичность и свариваемость сплава.

Цирконий вводится в алюминиевые сплавы в качестве модифицирующей добавки. Являясь переходным элементом, он обеспечивает получение полигонизованной структуры в горячедеформированных полуфабрикатах. При содержании циркония ниже 0,08 мас.% положительных воздействий не проявляется, при его содержании выше 0,15 мас.% выделяются грубые первичные частицы нерастворимой в алюминиевом твердом растворе фазы Аl3 Zr, что приводит к резкому снижению пластичности полуфабрикатов.

Титан и бор совместно улучшают структуру сплава и увеличивают его прочность. Введение титана более 0,1% и бора более 0,0005%, т.е. в количествах, превышающих допустимые пределы, приводит к снижению пластичности сплава.

Бериллий в количестве 0,001-0,01 мас.% предохраняет сплав от окисления в процессах плавки, литья, сварки, а также при технологических нагревах под деформацию и термическую обработку. Бериллий в количестве менее 0,001 мас.% не оказывает заметного влияния на свойства сплава, а введение бериллия более 0,01 мас.% не рекомендуется с точки зрения гигиены труда.

Висмут улучшает пластичность алюминиевых сплавов как основного металла, так и сварных соединений, связывая натрий, являющийся вредной примесью в алюминии, в соединения Na3Bi. При содержании этого элемента ниже указанного (0,01 мас.%) положительного воздействия не выявлено. При введении висмута в больших, чем предложено, количествах (0,1 мас.%) он образует сложную легкоплавкую фазу, выделяющиеся в виде глобулей по границам зерен, что снижает значения относительного удлинения материала.

Таким образом, в случае отклонения от указанных пределов как в сторону меньших, так и больших значений содержания компонентов или исключения какого-либо компонента из состава поставленная задача не решается.

Изобретение иллюстрируется примером.

В таблице 1 приведены химические составы опробованных композиций предлагаемого и известного сплавов. Составы сплавов 1-3 соответствуют предлагаемому. Сплав 1 легирован по нижнему пределу, сплав 2 легирован по среднему пределу, сплав 3 - по верхнему.

Таблица 1Химический состав сплавовСплавМагнийЛитийМедьЦирконийТитанБорБериллийВисмутЦинкАлюминий14,01,3-0,080,050,00010,0010,01-Основа24,81,5-0,10,080,00030,0050,05-Основа35,61,8-0,150,10,00050,010,1-Основа43,50,8-0,050,020,000010,00080,007-Основа56,32,3-0,220,150,00060,030,15-Основа64,22,40,30.120,2   0,5Основа

Сплав 4 легирован ниже нижнего предела, сплав 5 - выше верхнего предела. Сплав 6 - известный сплав (прототип).

Плавку готовили в электрической печи, слитки диаметром 70 мм отливали полунепрерывным способом. Плавление шихты, рафинирование расплава и литье слитков проводили при температуре 700-730°С. Отлитые слитки гомогенизировали по режиму 380-400°С. Гомогенизированные слитки прессовали на полосу 15×60 мм. После термической обработки полос вырезали образцы для определения механических свойств. Определение механических свойств основного металла при температуре 20ΔС проводили по ГОСТ 1497-84. Сварные соединения выполняли аргонодуговой сваркой с использованием присадочной проволоки. Свариваемость оценивали по пробе “рыбий скелет”, механические свойства сварных соединений при температуре 20°С определяли на образцах по ГОСТ 1497-84. Определение ударной вязкости сварных соединений при пониженной и комнатной температуре проводили по ГОСТ 9454-78. Испытания на угол изгиба (α) выполняли по ГОСТ 6996-66.

Механические свойства основного металла и сварных соединений приведены в таблицах 2 и 3.

Сплавы предлагаемого состава (1-3) обладают прочностными характеристиками на уровне прототипа, но большими значениями относительного удлинения по сравнению с ним.

Предлагаемые сплавы обладают хорошей свариваемостью, что позволяет использовать их при изготовлении сварных конструкций. Прочность сварных соединений сплавов находится на уровне 32,0-33,5 кгс/мм2. Значения характеристик пластичности (угла изгиба и ударной вязкости) у предлагаемого сплава при комнатной температуре и при минус 196°С выше, чем у прототипа.

Снижение содержания легирующих компонентов (сплав 4) ниже предлагаемого состава приводит к снижению свойств, особенно пластичности, сварных соединений.

Увеличение содержания легирующих компонентов: магния выше 5,6 мас.% и лития выше 1,8 мас.% (сплав 5) приводит к снижению пластичности сплава, особенно при температуре минус 196°С. Введение в сплав большего количества циркония, висмута и бора приводит к образованию грубых включений, снижающих качество материала.

Таким образом, предлагаемый состав сплава является оптимальным. Сплавы, имеющие запредельные содержания компонентов, не обладают необходимым комплексом свойств.

Таблица 2Механические свойства прессованных полосСплавσВ, кгс/ммδ0,2, кгс/ммδ, %144,033,011,5244,533,511,8345,034,511,3440,028,512,0543,532,06,0644,032,58,0Таблица 3Свойства сварных соединений.СплавσВ, кгс/мм2α, градKCU, кгс м/см2   20°С-196°С132,0800,900,89233,0780,920,90332,5800,880,79429,0800,880,87533,0550,650,50632,0560,740,50

Похожие патенты RU2247168C1

название год авторы номер документа
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2010
  • Дриц Александр Михайлович
  • Орыщенко Алексей Сергеевич
  • Григорян Валерий Арменакович
  • Осокин Евгений Петрович
  • Барахтина Наталия Николаевна
  • Соседков Сергей Михайлович
  • Арцруни Арташес Андреевич
  • Хромов Александр Петрович
  • Цургозен Леонид Александрович
RU2431692C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2003
  • Елисеев А.А.
  • Логунов А.В.
  • Голованов В.И.
  • Силис В.Э.
  • Шульгина Е.В.
  • Молочев В.П.
  • Петраковский С.А.
  • Оглоблина И.А.
RU2233903C1
КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ, СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ И ИЗДЕЛИЕ ИЗ НЕГО 1999
  • Грушко О.Е.
  • Еремина Н.Г.
  • Иванова Л.А.
  • Шевелева Л.М.
RU2163938C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1993
  • Фридляндер И.Н.
  • Грушко О.Е.
  • Шевелева Л.М.
RU2038405C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2002
  • Ткаченко Е.А.
  • Фридляндер И.Н.
  • Латушкина Л.В.
RU2233902C1
СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Li И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Колобнев Николай Иванович
  • Антипов Владислав Валерьевич
  • Хохлатова Лариса Багратовна
  • Вершинина Елена Николаевна
  • Оглодков Михаил Сергеевич
RU2560481C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2014
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Вахромов Роман Олегович
  • Рябов Дмитрий Константинович
  • Иванова Анна Олеговна
RU2576286C2
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Филатов Ю.А.
  • Елагин В.И.
  • Захаров В.В.
RU2082809C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2001
RU2209844C1

Реферат патента 2005 года СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к металлургии сплавов на основе алюминия, предназначенных для изготовления катаных, прессованных и кованых полуфабрикатов, используемых в качестве конструкционного материала в сварных конструкциях изделий ответственного назначения. Предложен сплав, содержащий следующие компоненты, мас.%: магний 4,0-5,6, литий 1,3-1,8, цирконий 0,08-0,15, титан 0,05-0,1, бор 0,0001-0,0005, бериллий 0,001-0,01, висмут 0,01-0,1, алюминий - остальное. Техническим результатом изобретения является создание сплава с повышенными характеристиками пластичности основного металла и сварных соединений, а также удовлетворительной свариваемостью и прочностью сварных соединений. 3 табл.

Формула изобретения RU 2 247 168 C1

Сплав на основе алюминия, содержащий магний, литий, цирконий, титан, бор, отличающийся тем, что он дополнительно содержит бериллий и висмут при следующем содержании элементов, мас.%:

Магний 4,0-5,6

Литий 1,3-1,8

Цирконий 0,08-0,15

Титан 0,05-0,1

Бор 0,0001-0,0005

Бериллий 0,001-0,01

Висмут 0,01-0,1

Алюминий Остальное

Документы, цитированные в отчете о поиске Патент 2005 года RU2247168C1

СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Колобнев Н.И.
  • Хохлатова Л.Б.
RU2171308C1
US 4584173 A, 22.04.1986
US 6461566 А, 08.10.2002
US 4626409 A, 02.12.1986.

RU 2 247 168 C1

Авторы

Силис В.Э.

Шульгина Е.В.

Елисеев А.А.

Логунов А.В.

Голованов В.И.

Мамон М.Д.

Плотноков А.Д.

Даты

2005-02-27Публикация

2003-11-26Подача