Изобретение относится к области теплофизических измерений. Известен [Авторское свидетельство СССР №309258, G 01 K 17/08, БИ №22, 03.09.1971] дифференциальный микрокалориметр (ДМ), содержащий массивный центральный блок, рабочую и компенсационную калориметрические ячейки (КЯ), снабженные измерительными термобатареями, включенными встречно, и компенсационными, в которых импульсная тепловая обратная связь (ТОС) за счет эффекта Пельтье охватывает только рабочую КЯ. Исходный (регистрируемый) тепловой поток W(t) измеряется по средней величине тока J(t) ТОС.
Недостатки этого ДМ - сложность системы импульсного управления током ТОС и сравнительно низкий верхний уровень динамического диапазона (Wmax), W(t). В существующих ДМ с КЯ оптимальной чувствительности [Вт/В] Wmax≈ 0,05 [Вт].
Наиболее близким по техническому решению к предлагаемому является ДМ [Авторское свидетельство СССР №342087, G 01 K 17/08, БИ №19, 14.06.1972], содержащееся которого отличается от рассмотренного выше лишь тем, что в нем ТОС охватывает одновременно обе КЯ, снабженные компенсационными термобатареями, включенными встречно (дифференциально), и ток J(t) ТОС изменяется непрерывно, а не импульсно.
Недостатком такого ДМ является то, что при всегда имеющейся неидентичности рабочей и компенсационной КЯ из-за сложности изготовления и специфики теплообмена при охлаждении и нагреве КЯ эффектом Пельтье, ТОС и, следовательно, зависимость W(t)=K(t)*J(t) не строго линейна, т.е. K(t)≠ const. Это не позволяет в существующих ДМ с КЯ оптимальной чувствительности реализовать Wmax>0,05 [Вт].
Задачей изобретения является: расширить динамический диапазон (Wmax), повысить точность и разрешающую способность измерений, сократить время выхода на режим достоверных измерений после внесения в КЯ рабочей ампулы (инициирования измеряемого W(t)).
Задача решается предлагаемым дифференциальным калориметром, содержащим массивный центральный блок, две калориметрические ячейки, снабженные измерительными термобатареями, включенными встречно, и нагревателями тепловой обратной связи, причем к одной из измерительных термобатарей подключен шунт заданной величины сопротивления.
На чертеже изображена функциональная схема предложенного ДМ. Рабочая КЯ1 и компенсационная КЯ2 расположены внутри массивного центрального блока 3. Сигнал с измерительных термобатарей 4 подают на вход усилителя 5, а к выходу его подключена общая точка сопротивлений (Rн) ТОС 6. Подгоночный резистор 7 обеспечивает строгое равенство начальных токов J0 (W(t)=0) нагревателей при питании их от разнополярных источников 8. Выходное напряжение U(t)выx=J(t)*Rн, npoпорциональное W(t).
регистрируется индикатором 9. Шунт Rш 10 обеспечивает строгую линейность ТОС.
Токи J0±J(t) при W(t)>0 в КЯ1 (для определенности) создают в дифференциальной измерительной термобатарее – термо-э.д.с.
где индексы 1, 2 относятся к параметрам КЯ1 и КЯ2 соответственно;
R1 - сопротивление термопарных проводников измерительной термобатареи КЯ1;
RH1, RH2 - сопротивление нагревателей цепи тепловой обратной связи [Ом];
G1; G2 - чувствительности [В/Вт].
Для определенности взято G1RH1>G2RH2 поэтому Rш подключен к измерительной термобатарее КЯ1.
Из (1) U(t)=-2J0(G1RH1+G2RH2)J(t)=AJ(t). где A=const, то есть ТОС линейна, что обеспечивает линейность (K/Rн=const) всего измерительного тракта W(t). Точное значение коэффициента K/RH1(BT/B) (чувствительность измерительного тракта) определяется в реальных ДМ, как обычно, калибровкой эталонным источником теплового потока.
Таким образом, изобретение позволяет при всегда существующей неидентичности КЯ (G1RH1≠G2RH2):
1. Реализовать ДМ со строго линейным измерительным трактом W(t) за счет подключения в него Rш заданной величины сопротивления, тем самым, обеспечивая:
1.1. Расширение динамического диапазона и повышение точности измерений (возможность регистрации в 5-10 раз более интенсивного W(t) в существующих КЯ оптимальной чувствительности. Предельно реализуемая величина Wmax ограничена допустимой линейностью собственно КЯ, т.е. зависимости G=f(W(t)).
1.2. Сокращение времени выхода на режим достоверных измерений (t0) (исключаются нелинейные искажения из-за перегрузки измерительного тракта W(t) в переходном процессе возмущением Wmax при входе в КЯ рабочей ампулы, сокращая t0 в 2-2,5 раза. При этом обеспечивается возможность математической обработкой результатов измерений [В.А.Забродин, Ю.Р.Колосов, Л.А.Ламакин, Л.Н.Гальперин ЖФХ, 2001, том 75, №7, стр.1335-1339] восстановить полезный сигнал - исходное W(t) в рабочей КЯ - и выделить его на фоне обычно много большего теплового возмущения (до Wmax) в переходном процессе, вызванным вводом в КЯ рабочей ампулы. Это повышает эффективное быстродействие ДМ и обеспечивает дальнейшее сокращения эффективного t0, позволяя регистрировать более быстро протекающие процессы, которые недоступны компенсационным измерениям существующих ДК).
2. Повышать точность и разрешающую способность за счет повышения (12%-15%) G из-за увеличения числа термопар измерительных термобатарей в связи с использованием в ТОС эффекта Джоуля, исключившего необходимость компенсационных термобатарей в КЯ.
название | год | авторы | номер документа |
---|---|---|---|
ДИФФЕРЕНЦИАЛЬНЫЙ КАЛОРИМЕТР | 1990 |
|
RU2017092C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ МИКРОКАЛОРИМЕТР И СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВЫДЕЛЕНИЯ | 2010 |
|
RU2475714C2 |
Дифференциальный микрокалориметр (его варианты) | 1982 |
|
SU1068741A1 |
ДИФФЕРЕНЦИАЛЬНЫЙ МИКРОКАЛОРИЛ1ЕТР | 1971 |
|
SU309258A1 |
Дифференциальный микрокалориметр | 1978 |
|
SU732689A2 |
Дифференциальный микрокалориметр (его варианты) | 1984 |
|
SU1236334A1 |
ВАТЕНТКО- Г. Б. Манелис, Ю. И. Рубцсв, Е. В. Довбий, П. К. BacpjfBiBygjfjjg^pj.,f.gВИБЛИОТЕКА | 1970 |
|
SU271076A1 |
ДИФФЕРЕНЦИАЛЬНЫЙ МИКРОКАЛОРИМЕТР | 1972 |
|
SU342087A1 |
ДИФФЕРЕНЦИАЛЬНЫЙ АДИАБАТНЫЙ СКАНИРУЮЩИЙ МИКРОКАЛОРИМЕТР ВЫСОКОГО ДАВЛЕНИЯ | 2008 |
|
RU2364845C1 |
Микрокалориметр | 1983 |
|
SU1249352A1 |
Изобретение относится к области теплофизических измерений. Дифференциальный микрокалориметр содержит массивный центральный блок и две калориметрические ячейки. При этом калориметрические ячейки снабжены измерительными термобатареями, включенными встречно, и нагревателями тепловой обратной связи. К одной из измерительных термобатарей подключен шунт с величиной сопротивления, обеспечивающей линейность тепловой обратной связи. Изобретение позволяет расширить динамический диапазон, повысить точность и разрешающую способность измерений, сократить время выхода на режим достоверных измерений после внесения в калориметрическую ячейку рабочей ампулы. 1 ил.
Дифференциальный микрокалориметр, содержащий массивный центральный блок, две калориметрические ячейки, снабженные измерительными термобатареями, включенными встречно, отличающийся тем, что калориметрические ячейки дополнительно снабжены нагревателями тепловой обратной связи, а к одной из измерительных термобатарей подключен шунт с величиной сопротивления, определяемой из соотношения
[Oм],
где индексы 1, 2 относятся соответственно к калориметрической ячейке 1 и калориметрической ячейке 2, a G1 RH1>G2 RH2;
Rш - сопротивление шунта, [Ом];
R1 - сопротивление термопарных проводников измерительной термобатареи, [Ом];
RH1, RH2 - сопротивление нагревателей цепи тепловой обратной связи, [Ом];
G1, G2 - чувствительности, [В/Вт].
ДИФФЕРЕНЦИАЛЬНЫЙ МИКРОКАЛОРИМЕТР | 0 |
|
SU342087A1 |
ДИФФЕРЕНЦИАЛЬНЫЙ МИКРОКАЛОРИМЕТР | 0 |
|
SU290184A1 |
ДИФФЕРЕНЦИАЛЬНЫЙ КАЛОРИМЕТР | 1990 |
|
RU2017092C1 |
US 3643491 A, 22.02.1972. |
Авторы
Даты
2005-03-20—Публикация
2003-06-17—Подача