УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВНУТРИСКВАЖИННЫХ ПАРАМЕТРОВ Российский патент 2005 года по МПК E21B47/00 

Описание патента на изобретение RU2249108C1

Изобретение относится к технике добычи углеводородов (нефть, газ и газоконденсат) и предназначено для измерения физических параметров среды в трубной полости и/или затрубном пространстве добывающих и нагнетательных скважин с одним или несколькими пластами.

Известно устройство в виде глубинного манометра, расходомера и дебитометра (Муравьев В.М. Справочник мастера по добыче нефти. Изд.3, переб. и доп. М., “Недра”, 1975, стр.57-65), состоящее из корпуса, внутри которого размещен измерительный часовой механизм.

Известно устройство в виде глубинного манометра-термометра АМТ-08 (Томское научно-производственное и внедренческое общество "Сиам", материал с сайта http://www.siam.tomsknet.ru/cgi-bin/catalog/catalog.cgi?cat=4.3&menu=pribor), спускаемого в скважину на каротажном кабеле, состоящего из корпуса с внутренней измерительной системой.

Эти устройства не позволяют измерять физические параметры (давление, расход) среды длительное время в полости труб, при этом манометр не предусматривает возможности замера давления в затрубном пространстве, а также не может быть спущен в работающие высокодебитные скважины из-за возможности его выброса.

Известно устройство в виде струйного насоса УГИС (Устройство для геофизических исследований скважин, разработка СКТБ "Недра" ОАО, материалы SPWLA 98 с сайта http://petrologloss.narod.rn/Peregin.htm), состоящего из посадочного гнезда в виде корпуса со съемным глубинным прибором в виде функциональной вставки, спускаемого в скважину на канатной или каротажной технике. Недостатком его является то, что глубинный прибор устанавливается по центру посадочного гнезда, и при этом отсутствует возможность спуска канатных инструментов ниже его. По этой причине ограничивается область применения устройства в различных скважинах, в частности, при одновременно-раздельной эксплуатации скважин на многопластовых месторождениях.

Целью изобретения является повышение надежности и эффективности, в том числе функциональной возможности и области применения устройства, а также точности измеряемых физических величин в полости труб и/или затрубном пространстве в добывающих и нагнетательных скважинах с одним или несколькими эксплуатационными объектами (пластами).

Указанная цель достигается за счет следующих решений:

- посадочное гнездо выполнено в виде овальной скважинной камеры, имеющей эксцентричный карман с посадочными поверхностями под уплотнительные элементы и одним или несколькими гидравлическими каналами, сообщающими полости кармана с затрубным и/или трубным пространствами скважины, а глубинный прибор выполнен в виде полого корпуса с гидравлическими каналами, наружными уплотнительными элементами и фиксатором, внутри которого расположена измерительная система без или с демпфером, при этом глубинный прибор установлен в эксцентричный карман скважинной камеры с возможностью сообщения затрубного и/или трубного пространства через гидравлические каналы с измерительной системой для регистрации физических параметров среды в затрубном и/или трубном пространстве скважины и/или рабочих параметров насосной установки;

- устройство может состоять из нескольких посадочных гнезд со съемными глубинными приборами для измерения физических параметров среды в разных каналах и/или глубинах скважины;

- измерительная система может быть выполнена в виде манометра и/или термометра, и/или расходомера, и/или уровнемера, и/или плотномера, и/или резистивиметра, и/или микрофона, и/или шумомера, и/или датчика радиоактивности;

- измерительная система может быть выполнена в виде полого цилиндра и внутри него установлен один или несколько датчиков для измерения одной или нескольких физических величин - давления, температуры, удельной электропроводности, обводненности и газосодержания продукции, водородного показателя рН, окислительно-восстановительного потенциала Eh, содержания растворенного кислорода, концентрации различных ионов водной среды, содержания мехпримесей, уровня воды и нефти, расхода воды, нефти и газа, химического состава среды, скорости потока, изменения длины и напряжений в колонне труб, тензодатчик для измерения вибраций, интенсивности радиоактивного излучения;

- демпфер может быть установлен снаружи и/или изнутри полого цилиндра, и/или на датчик или датчики и выполнен из одного или нескольких элементов - эластичной манжеты, кольца и прокладки, пружины, жидкости, пены, пенопласта, пенонаполнителя, ваты, матерчатого наполнителя или кампауда, для предупреждения динамической нагрузки с корпуса на измерительную систему при установке и извлечении глубинного прибора;

- измерительная система может быть дополнительно оснащена эластичным рукавом, непроницаемым для измеряемой среды;

- измерительная система может быть выполнена в виде автономной замерной системы для регистрации физических параметров среды выше насоса и/или на уровне продуктивного пласта или пластов одной скважины;

- устройство может быть дополнительно оснащено наземным блоком, взаимодействующим со съемным глубинным прибором в скважинной камере;

- наземный блок может быть соединен со съемным глубинным прибором в скважинной камере каротажным или оптоволоконным кабелем или связан бесконтактно с помощью волн - электромагнитных, световых, акустических, гидравлических и радиоволн;

- наземный блок может быть соединен со съемным глубинным прибором в скважинной камере электрическим кабелем для подвода тока и/или передачи сигналов к наземному блоку в зависимости от измеряемых физических величин;

- измерительная система может быть оснащена одним или несколькими блоками - первичного преобразователя, памяти, программного обеспечения, питания, контроля режимов работы скважины, вычислений на стационарных или нестационарных режимах работы скважины, сравнения и визуализации, который выводит информацию в режиме "реального времени";

- измерительная система может быть дополнительно оснащена источником одного или нескольких излучений - радиоактивных, упругих колебаний, акустических, тепловых, световых и электромагнитных;

- измерительная система может быть дополнительно оснащена источником нейтронов, гамма-квантов для облучения скважинной жидкости и датчиками регистрации быстрых или тепловых нейтронов, или вторичных гамма-квантов, и/или блоком для приема электрических сигналов от датчиков нейтронов, гамма-квантов, и/или блоком для вычисления пористости пласта и изменения насыщенности его пластовыми флюидами;

- устройство может быть дополнительно оснащено источником и датчиком упругих колебаний с блоком приема, и/или блоком памяти, и/или аналого-цифровым преобразователем, и/или блоком ключей, и/или демультиплексором, и/или мультиплексором, и/или блоком усилителей, к которому подключены один или несколько датчиков упругих колебаний;

- устройство может быть снабжено системой низкочастотной электрометрии для контроля динамики насыщенности продуктивных пластов в процессе эксплуатации скважин;

- устройство может быть спущено в скважину с несколькими глубинными приборами в нескольких скважинных камерах напротив продуктивного пласта для определения по их показаниям профиля притока или профиля приемистости при различных технологических режимах (депрессиях) скважины и/или напротив расположения газонефтяного контакта, и/или расположения водонефтяного контакта, и/или текущей нефтенасыщенности в различных интервалах продуктивного пласта.

Положительный эффект от применения устройства достигается за счет оптимизации технологического режима, диагностики и устранении неисправностей скважинной установки при получении достоверной информации о физических величинах в трубной полости и/или затрубном пространстве, в частности при одновременно-раздельной эксплуатации (ОРЭ) (добыче и закачке) нескольких пластов скважин многопластовых месторождений.

Принципиальная схема устройства для исследования скважины приводится на фигурах 1-5: на фиг.1 - глубинный прибор; на фиг.2, 3 - посадочное гнездо (двух исполнений) в виде овальной скважинной камеры; на фиг.4 - устройство в скважине над насосом; на фиг.5 - устройство в скважине при ОРЭ.

Устройство, спущенное в скважину, состоит по меньшей мере из одного посадочного гнезда 1, выполненного в виде овальной скважинной камеры, имеющей эксцентричный полый карман 2 с посадочными поверхностями 3, 4 под уплотнительные элементы и одним или несколькими гидравлическими каналами 5, сообщающими полости 6 кармана с затрубным и/или трубным пространствами скважины. При этом глубинный прибор 7 выполнен в виде полого корпуса с гидравлическими каналами 8 и/или 9, наружными уплотнительными элементами 10, 11 и фиксатором 12. Внутри полого корпуса расположена измерительная система 13 в виде в виде одного или нескольких приборов (например, манометра, термометра, расходомера, уровнемера, плотномера, резистивиметра, микрофона, радиоактивного датчика, автономной замерной системы и пр.), или в виде полого цилиндра 14 с одним или несколькими датчиками (приборами) для измерения одной или нескольких физических величин (например, давления, температуры, удельной электропроводности, обводненности и газосодержания продукции, водородного показателя рН, окислительно-восстановительного потенциала Eh, содержания растворенного кислорода, концентрации различных ионов водной среды, содержания мехпримесей, уровня воды и нефти, расхода воды, нефти и газа, химического состава среды, скорости потока, изменения длины и напряжений в колонне труб, тензодатчик для измерения вибраций, интенсивности радиоактивного излучения и пр.).

Приборы и/или датчики, и/или полый цилиндр 14 измерительной системы 13 могут быть выполнены с одним или несколькими демпферами 15 и/или 16, которые установлены снаружи и/или изнутри полого цилиндра 14, причем они выполнены из одного или нескольких элементов (например, эластичной манжеты или рукава, кольца и прокладки, пружины, жидкости, пены, пенопласта, пенонаполнителя, ваты, матерчатого наполнителя или кампауда и пр.) для предупреждения динамической нагрузки с корпуса на измерительную систему при установке и извлечении глубинного прибора.

Измерительная система 13 может быть оснащена одним или несколькими внутренними блоками и/или источниками, и/или другими элементами 17 (например, в виде первичного преобразователя, памяти, программного обеспечения, питания, контроля режимов работы скважины, вычислений на стационарных или нестационарных режимах работы скважины, сравнения и визуализации, который выводит информацию в режиме "реального времени", одного или нескольких излучений - радиоактивных, упругих колебаний, тепловых, световых и электромагнитных и пр.).

Устройство может быть спущено в скважину с несколькими глубинными приборами 7 в несколько посадочных гнезд 1 над насосом 18 (см. фиг.5) или напротив продуктивного пласта (см. фиг.4). Устройство может быть дополнительно оснащено наземным блоком 19, взаимодействующим (например, через каротажный или оптоволоконный, или электрический кабель 20, или связанным бесконтактно с помощью волн - электромагнитных, световых, акустических, гидравлических и радиоволн и пр.) со съемным глубинным прибором 7 или посадочным гнездом 1.

Устройство для исследования скважин работает следующим образом.

В скважину при спуске компоновки (например, насосной, газлифтной, фонтанной, нагнетательной и исследовательской) также спускают одно или несколько посадочных гнезд 1 в виде скважинных камер без или со съемным клапаном (или глухой пробкой). После завершения спуска установки и монтажа устья, в зависимости от условий эксплуатации и постановки задачи исследований, извлекают съемный клапан (если был спущен) с помощью канатной или каротажной техники, а затем вместо него спускают и устанавливают в посадочное гнездо 1 съемный глубинный прибор 7. При этом добываемая пластовая среда (флюид) и/или закачиваемый рабочий агент через гидравлические каналы 5 и 8 устройства действует на его измерительную систему 13, и последняя, в свою очередь, определяет и/или записывает физические величины (короткое или длительное время) одного или нескольких измеряемых параметров среды и/или рабочего агента.

Похожие патенты RU2249108C1

название год авторы номер документа
СПОСОБ ШАРИФОВА ДЛЯ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ И ПООЧЕРЕДНОЙ ЭКСПЛУАТАЦИИ НЕСКОЛЬКИХ ПЛАСТОВ ОДНОЙ НАГНЕТАТЕЛЬНОЙ СКВАЖИНОЙ 2003
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Кудряшов С.И.
  • Шашель В.А.
  • Хамракулов А.А.
  • Гарипов О.М.
  • Прытков Д.В.
RU2253009C1
СКВАЖИННАЯ УСТАНОВКА ДЛЯ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ И ПООЧЕРЕДНОЙ ЭКСПЛУАТАЦИИ НЕСКОЛЬКИХ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ 2003
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Ужаков В.В.
  • Краснопёров В.Т.
  • Кузнецов Н.Н.
  • Гарипов О.М.
  • Гурбанов Сейфулла Рамиз Оглы
  • Набиев Натиг Адил Оглы
  • Набиев Физули Ашраф Оглы
  • Синёва Ю.Н.
  • Юсупов Р.Ф.
RU2262586C2
МАНДРЕЛЬНЫЙ ПРИБОР ШАРИФОВА ДЛЯ ИЗМЕРЕНИЯ СКВАЖИННЫХ ПАРАМЕТРОВ 2009
  • Шарифов Махир Зафар Оглы
RU2387825C1
СКВАЖИННАЯ УСТАНОВКА 1997
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Вершинин Ю.Н.
  • Богданов В.Л.
  • Гулин А.В.
  • Ермолов Б.А.
  • Егорин О.А.
  • Шевелев А.В.
  • Донков П.В.
RU2131017C1
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ДОБЫЧИ УГЛЕВОДОРОДОВ ЭЛЕКТРОПОГРУЖНЫМ НАСОСОМ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2008
  • Леонов Василий Александрович
  • Шарифов Махир Зафар Оглы
  • Благовещенский Виктор Анатольевич
  • Брезицкий Сергей Владимирович
  • Бульба Владимир Анатольевич
  • Дашевский Александр Владимирович
  • Капустин Михаил Михайлович
  • Караваев Сергей Владимирович
  • Коршунов Александр Юрьевич
  • Подюк Василий Григорьевич
  • Черепанов Александр Владимирович
  • Леонов Илья Васильевич
RU2365744C1
УСТРОЙСТВО ДЛЯ ПОФАЗНОГО ЗАМЕРА ФИЗИЧЕСКИХ ПАРАМЕТРОВ ФЛЮИДА В ГОРИЗОНТАЛЬНОЙ СКВАЖИНЕ 2013
  • Николаев Олег Сергеевич
RU2523335C1
ПАКЕРНАЯ РАЗЪЕДИНЯЮЩАЯ УСТАНОВКА ШАРИФОВА ДЛЯ ЭКСПЛУАТАЦИИ ПЛАСТОВ СКВАЖИНЫ (ВАРИАНТЫ) 2004
  • Шарифов Махир Зафар Оглы
  • Леонов Василий Александрович
  • Мусаверов Ринат Хадеевич
  • Набиев Адил Дахил Оглы
  • Ибадов Гахир Гусейн Оглы
  • Кузнецов Николай Николаевич
  • Синёва Юлия Николаевна
RU2305170C2
СПОСОБ ДОБЫЧИ ФЛЮИДА ИЗ ПЛАСТОВ ОДНОЙ СКВАЖИНЫ ЭЛЕКТРОПРИВОДНЫМ НАСОСОМ С ЭЛЕКТРИЧЕСКИМ КЛАПАНОМ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) 2008
  • Леонов Василий Александрович
  • Шарифов Махир Зафар Оглы
  • Сагаловский Владимир Иосифович
  • Говберг Артем Савельевич
  • Сагаловский Андрей Владимирович
  • Мишо Солеша
  • Сальманов Рашит Гилемович
  • Леонов Илья Васильевич
RU2385409C2
СПОСОБ ИЗОЛЯЦИИ НЕГЕРМЕТИЧНОГО УЧАСТКА ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ ИЛИ ИНТЕРВАЛА ПЕРФОРАЦИИ НЕЭКСПЛУАТИРУЕМОГО ПЛАСТА СКВАЖИНЫ (ВАРИАНТЫ) 2008
  • Шарифов Махир Зафар Оглы
  • Леонов Василий Александрович
  • Леонов Илья Васильевич
  • Никишов Вячеслав Иванович
  • Габдулов Рушан Рафилович
  • Ибадов Гахир Гусейн Оглы
  • Набиев Адил Дахил Оглы
  • Азизов Фатали Хубали Оглы
  • Шахмуратов Иршат Нурисламович
RU2383713C1
СЪЕМНЫЙ РЕГУЛЯТОР ДВУХШТУЦЕРНЫЙ ШАРИФОВА 2003
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Кузнецов Н.Н.
  • Иванов О.А.
  • Синёва Ю.Н.
RU2256778C1

Иллюстрации к изобретению RU 2 249 108 C1

Реферат патента 2005 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВНУТРИСКВАЖИННЫХ ПАРАМЕТРОВ

Изобретение относится к технике добычи углеводородов (нефть, газ и газоконденсат) и предназначено для измерения физических параметров среды в трубной полости и/или затрубном пространстве добывающих и нагнетательных скважин с одним или несколькими пластами. Техническим результатом изобретения является повышение надежности и эффективности устройства, а также повышение точности измерения физических величин в полости труб и/или затрубном пространстве скважин. Устройство включает спущенное в скважину на колонне труб одно или несколько посадочных гнезд со съемным глубинным прибором (ГП). Посадочное гнездо выполнено в виде овальной скважинной камеры (СК), имеющей эксцентричный карман с посадочными поверхностями под уплотнительные элементы и одним или несколькими гидравлическими каналами, сообщающими полости кармана с затрубным и/или трубным пространствами скважины. Причем ГП выполнен в виде полого корпуса с гидравлическими каналами, наружными уплотнительными элементами и фиксатором. Внутри корпуса расположена измерительная система без или с демпфером. При этом ГП установлен в эксцентричный карман СК с возможностью сообщения затрубного и/или трубного пространства через гидравлические каналы с измерительной системой для регистрации физических параметров среды в затрубном и/или трубном пространстве скважины и/или рабочих параметров насосной установки. 15 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 249 108 C1

1. Устройство для измерения внутрискважинных параметров, включающее спущенное в скважину на колонне труб, по меньшей мере, одно посадочное гнездо со съемным глубинным прибором, отличающееся тем, что посадочное гнездо выполнено в виде овальной скважинной камеры, имеющей эксцентричный карман с посадочными поверхностями под уплотнительные элементы и одним или несколькими гидравлическими каналами, сообщающими полости кармана с затрубным и/или трубным пространствами скважины, а глубинный прибор выполнен в виде полого корпуса с гидравлическими каналами, наружными уплотнительными элементами и фиксатором, внутри которого расположена измерительная система без или с демпфером, при этом глубинный прибор установлен в эксцентричный карман скважинной камеры с возможностью сообщения затрубного и/или трубного пространства через гидравлические каналы с измерительной системой для регистрации физических параметров среды в затрубном и/или трубном пространстве скважины, и/или рабочих параметров насосной установки.2. Устройство по п.1, отличающееся тем, что оно состоит из нескольких посадочных гнезд со съемными глубинными приборами для измерения физических параметров среды в разных каналах и/или глубинах скважины.3. Устройство по п.1, отличающееся тем, что измерительная система выполнена в виде манометра, и/или термометра, и/или расходомера, и/или уровнемера, и/или плотномера, и/или резистивиметра, и/или микрофона, и/или шумомера, и/или датчика радиоактивности.4. Устройство по п.1 или 2, отличающееся тем, что измерительная система выполнена в виде полого цилиндра и внутри него установлен один или несколько датчиков для измерения одной или нескольких физических величин - давления, температуры, удельной электропроводности, обводненности и газосодержания продукции, водородного показателя рН, окислительно-восстановительного потенциала Eh, содержания растворенного кислорода, концентрации различных ионов водной среды, содержания мехпримесей, уровня воды и нефти, расхода воды, нефти и газа, химического состава среды, скорости потока, изменения длины и напряжений в колонне труб, тензодатчик для измерения вибраций, интенсивности радиоактивного излучения.5. Устройство по п.1 или 4, отличающееся тем, что демпфер установлен снаружи и/или изнутри полого цилиндра и/или на датчик или датчики и выполнен из одного или нескольких элементов - эластичной манжеты, кольца и прокладки, пружины, жидкости, пены, пенопласта, пенонаполнителя, ваты, матерчатого наполнителя или компаунда для предупреждения динамической нагрузки с корпуса на измерительную систему при установке и извлечении глубинного прибора.6. Устройство по п.1, отличающееся тем, что измерительная система дополнительно оснащена эластичным рукавом, непроницаемым для измеряемой среды.7. Устройство по п.1, отличающееся тем, что измерительная система выполнена в виде автономной замерной системы для регистрации физических параметров среды выше насоса и/или на уровне продуктивного пласта или пластов одной скважины.8. Устройство по п.1, отличающееся тем, что оно дополнительно оснащено наземным блоком, взаимодействующим со съемным глубинным прибором в скважинной камере.9. Устройство по п.1 или 8, отличающееся тем, что наземный блок соединен со съемным глубинным прибором в скважинной камере каротажным или оптоволоконным кабелем или связан бесконтактно с помощью волн - электромагнитных, световых, акустических, гидравлических и радиоволн.10. Устройство по любому из пп.1, 8, 9, отличающееся тем, что наземный блок соединен со съемным глубинным прибором в скважинной камере электрическим кабелем для подвода тока и/или передачи сигналов к наземному блоку в зависимости от измеряемых физических величин.11. Устройство по любому из пп.1, 8-10, отличающееся тем, что измерительная система оснащена одним или несколькими блоками - первичного преобразователя, памяти, программного обеспечения, питания, контроля режимов работы скважины, вычислений на стационарных или нестационарных режимах работы скважины, сравнения и визуализации, который выводит информацию в режиме "реального времени".12. Устройство по п.1 или 11, отличающееся тем, что измерительная система дополнительно оснащена источником одного или нескольких излучений - радиоактивных, упругих колебаний, акустических, тепловых, световых и электромагнитных.13. Устройство по п.1 или 12, отличающееся тем, что измерительная система дополнительно оснащена источником нейтронов, гамма-квантов для облучения скважинной жидкости и датчиками регистрации быстрых и тепловых нейтронов, или вторичных гамма-квантов, и/или блоком для приема электрических сигналов от датчиков нейтронов, гамма-квантов, и/или блоком для вычисления пористости пласта и изменения насыщенности его пластовыми флюидами.14. Устройство по п.1, отличающееся тем, что оно дополнительно оснащено источником и датчиком упругих колебаний с блоком приема, и/или блоком памяти, и/или аналого-цифровым преобразователем, и/или блоком ключей, и/или демультиплексором, и/или мультиплексором, и/или блоком усилителей, к которому подключены один или несколько датчиков упругих колебаний.15. Устройство по п.1, отличающееся тем, что оно снабжено системой низкочастотной электрометрии для контроля динамики насыщенности продуктивных пластов в процессе эксплуатации скважин.16. Устройство по п.1, отличающееся тем, что спущено в скважину несколько глубинных приборов в несколько скважинных камер напротив продуктивного пласта для определения по их показаниям профиля притока или профиля приемистости при различных технологических режимах (депрессиях) скважины и/или, напротив, расположения газонефтяного контакта, и/или расположения водонефтяного контакта, и/или текущей нефтенасыщенности в различных интервалах продуктивного пласта.

Документы, цитированные в отчете о поиске Патент 2005 года RU2249108C1

ПЕРЕГИНЕЦ В.А., ШАНОВСКИЙ Я.В
Использование новых технологий обработки призабойной зоны пластов и геофизический контроль их эффективности
Материалы spwla
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Устройство для измерения и регистрации параметров скважин 1987
  • Рыбаков Александр Николаевич
  • Фролов Валентин Григорьевич
  • Исаченко Вадим Валериевич
  • Белкин Станислав Григорьевич
  • Госсельблат Алексей Дмитриевич
SU1483463A1
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНЫХ ИНТЕРВАЛОВ В СКВАЖИНАХ С ЭЛЕКТРИЧЕСКИМИ ЦЕНТРОБЕЖНЫМИ НАСОСАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1988
  • Габдуллин Т.Г.
  • Шатунов А.С.
  • Хамадеев Э.Т.
  • Царегородцев А.А.
SU1587991A1
СИСТЕМА ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ 1993
  • Савич А.Д.
  • Семенцов А.А.
  • Семенов Б.А.
RU2077735C1
СКВАЖИННАЯ УСТАНОВКА 1997
  • Шарифов Махир Зафар Оглы
  • Леонов В.А.
  • Вершинин Ю.Н.
  • Богданов В.Л.
  • Гулин А.В.
  • Ермолов Б.А.
  • Егорин О.А.
  • Шевелев А.В.
  • Донков П.В.
RU2131017C1
СПОСОБ ИССЛЕДОВАНИЯ ДЕЙСТВУЮЩИХ СКВАЖИН 1999
  • Габдуллин Т.Г.
  • Габдуллин Ш.Т.
  • Корженевский А.Г.
  • Мунасипов Р.М.
  • Томус Ю.Б.
  • Хисамов Р.С.
RU2167287C2
СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ И БЛОЧНАЯ КОМПЛЕКСНАЯ СИСТЕМА УСТАНОВОК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Тимашев А.Т.
  • Габдрахманов Н.Х.
  • Тимашева А.А.
  • Хамидуллин Ф.Х.
RU2189439C2
ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ СКВАЖИН 2001
  • Бескровный Н.И.
RU2205427C2
US 5365229 A, 15.11.1994
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОЙ МЕЛАМИНОФОРМАЛЬДЕГИДНОЙ СМОЛЫtiikViiii..» i*»""* 0
  • Н. В. Шорыгина, Н. А. Букко Б. П. Яценко
SU398581A1

RU 2 249 108 C1

Авторы

Осадчий В.М.

Леонов В.А.

Перегинец В.А.

Полыгалов В.Ф.

Шарифов Махир Зафар Оглы

Мусаверов Р.Х.

Гарипов О.М.

Синёва Ю.Н.

Мокрый М.В.

Даты

2005-03-27Публикация

2003-09-11Подача