ПОЛИМЕРНЫЕ ВОДОРАСТВОРИМЫЕ ПРОИЗВОДНЫЕ ТРИТЕРПЕНОИДОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ Российский патент 2005 года по МПК C08F226/10 C08F222/12 A61K47/48 A61K31/79 A61P31/00 

Описание патента на изобретение RU2253657C2

Изобретение относится к химии высокомолекулярных соединений, более точно к полимерным водорастворимым производным тритерпеноидов общей формулы I [фиг.I], где в качестве полимера-носителя берут водорастворимые сополимеры N-винилпирролидона с алкиловыми эфирами α,β-(метил)акриловых кислот и их четвертичными аммониевыми солями общей формулы II [фиг.II], при этом А - остаток тритерпеноида из ряда, содержащего бетулиновую {1}, бетулоновую {2}, глицирретовую {3}, глицирризиновую {4}, урсоловую {5}, урсоновую {6} [фиг.III], олеаноловую {7}, олеаноновую {8}, меристотроповую {9}, дикетомеристотроповую {10}, мацедониковую {11}, дикетомацедониковую {12}, эхиноцистовую {13} кислоты [фиг.III] или другой карбоксилсодержащий тритерпеноид или смесь карбоксилсодержащих тритерпеноидов; при этом - R1-Н, СН3; R2-Н, СН3; R3-СН3, С2Н5; R4 - алкил из ряда С6Н1316Н33; Hal-J, Br или Сl; k=65-95 мол.%; l=0,1-34 мол.%, m=0,1-33,9 мол.%, n=0,5-5,4 мол.%; молекулярная масса (ММ)=(7-100).103D.

Изобретение относится также к способу получения полимерных водорастворимых производных тритерпеноидов указанного строения. Изобретение может найти широкое использование в качестве веществ с повышенной антивирусной активностью, которые в медицине и ветеринарии могли бы стать основой для создания лекарственных средств.

Многие широко используемые средства обладают антимикробным действием, но не активны в отношении вирусов.

Известно, что природные тритерпеноиды и их низкомолекулярные производные обладают противовирусной активностью по отношению к широкому спектру вирусов различной природы: гриппа, герпеса, Эпштейна-Барр, ВИЧ. Они характеризуются также высоким уровнем противовоспалительной активности, ингибируют или подавляют рост таких широко распространенных злокачественных новообразований, как лейкемия, лимфома, меланома, опухоли легких, простаты, яичников и др. (1. Платонов В.Г., Зорина А.Д., Гордон М.А. и др./ Исследование противогриппозной активности тритерпеноидов//Химико-фармац. журн. 1995. №2. С.35-42; 2. Walker M.A./Anti-HIV activity of betulinic acid analogue YKFH3 12//Drug Discov. Today. 2001. V. 262. №2. Р.154-169; 3. Kashiwada Y., Nagao Т.. Hashimoto A. et al./Anti-AIDS agents. 38. Anti-HIV activity of 3-О-acyl ursolic acid derivatives//J. Nat. Prod. 2000. V. 48. №9. Р.1387-1390; 4. Ohigashi H., Takamura H., Koshimizu К. et al./Search for possible antitumour promoters by inhibition of 12-О-tetradecanoyl-13-acetate, induced Epstein-Barr virus activation; ursolic acid and oleanolic acid from an anti-inflammatory Chinese medicinical plant, Glechoma Hederaceae L.//Cancer Lett. 1986. V. 30. P.143-151; 5. Recio M.C., Giner R.M., Manez S. et al./Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas// Planta Med. 1995. V. 61. №1. Р.9-12; 6. Zuco V., Supino R., Rignetti S.C. et al./Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells//Cancer Lett. 2001. V. 45. №4. Р.1225-1230; 7. Ramadoss S., Jaggi M., Siddiqui M.J.A./Use of betulinic acid and its derivatives for inhibiting cancer growth and a method of monitoring this//US Patent №6.048.847, приоритет от 18.03.1998 г., выдан 11.04.2000 г.).

При этом в отличие от многих известных синтетических химиотерапевтических средств природные соединения, тритерпеноиды и их производные, малотоксичны для организма человека, хотя могут вызывать при введении нежелательные эффекты, например, глицирретовая кислота и ее производные влияют на водно-солевой баланс и их длительный прием приводит к повышению артериального давления, которое быстро нормализуется после прекращения приема средства (8. Shibata S., Takahashi К., Yano S et al./ Chemical modification of glycyrrhetinic acid in relation to the biological activities//Chem. Pharm. Bull. 1987. V. 35. №5. P.1910-1918.).

Основными недостатками известных природных тритерпеноидов являются, во-первых, необходимость создания в организме большой концентрации дорогостоящего препарата, поскольку низкомолекулярные вещества быстро выводятся из организма, во-вторых, природные тритерпеноиды практически нерастворимы в воде, поэтому возникают сложности при их введении.

Задачей заявленного изобретения являлось придание тритерпеноидам водорастворимости при сохранении высокого уровня биологической активности и увеличение времени циркуляции при снижение концентрации вводимых в организм средств.

Эта задача решалась, во-первых, полимерными производными тритерпеноидов общей формулы [фиг.I], где в качестве полимера-носителя берут водорастворимые сополимеры N-винилпирролидона с аминоалкиловыми эфирами α,β-(метил)акриловых кислот и их четвертичными аммониевыми солями [фиг.II], при этом А - остаток тритерпеноида из ряда, содержащего бетулиновую {1}, бетулоновую {2), глицирретовую {3}, глицирризиновую {4}, урсоловую {5}, урсоновую {6} [фиг.III], олеаноловую {7}, олеаноновую {8}, меристотроповую {9}, дикетомеристотроповую {10}, мацедониковую {11}, дикетомацедониковую {12}, эхиноцистовую {13} кислоты [фиг.III], или другой карбоксилсодержащий тритерпеноид или смесь карбоксилсодержащих тритерпеноидов; при этом R1-Н, СН3; R2-Н, СН3; R3-СН3, С2Н5; R4 - алкил из ряда С6Н1316Н33; Hal-J, Br или Сl; k=65-95 мол.%; l=0,1-34 мол.%, m=0,1-33,9 мол.%, n=0,5-5,4 мол.%: молекулярная масса (ММ=(7-100).103 дальтон.

Во-вторых, задача решалась способом получения полимерных производных тритерпеноидов заявленного строения, который реализовался следующей совокупностью существенных признаков:

1. Проводят взаимодействие тройного сополимера со структурой II [фиг.II], где k=65-95 мол.%; l=0,1-34 мол.%; х=1,0-34,9 мол.%: R1-H, СН3; R2-H, СН3; R3-СН3, C2H5; R4 - алкил из ряда С6H1316Н33; Hal=J, Br, Cl; MM=(7100)103 D с тритерпеноидом с получением целевого продукта со структурой I [фиг.I], где А - остаток тритерпеноида из ряда, содержащего бетулиновую {1}, бетулоновую {2}, глицирретовую {3}, глицирризиновую {4}, урсоловую [5], урсоновую {6} [фиг.III], олеаноловую {7}, олеаноновую {8}, меристотроповую {9}, дикетомеристотроповую {10}, мацедониковую {11}, дикето-мацедониковую {12}, эхиноцистовую {13} кислоты [фиг.III] или другой карбоксилсодержащий тритерпеноид или смесь карбоксилсодержащих тритерпеноидов; при этом R1-Н, СН3; R2-Н, СН3; R3-СН3, С2Н5; R4 - алкил из ряда С6Н1316Н33; Hal-J, Br или Сl; k=65-95 мол.%; l=0,1-34 мол.%, m=0,1-33,9 мол.%, n=1-5,4 мол.%; молекулярная масса (ММ)=(7-100)·103 дальтон.

2. Взаимодействие с тритерпеноидом проводят в органическом растворителе при концентрации тройного сополимера 1-30 мас.%, концентрации тритерпеноида 0,05-3,4 мас.%; молярном отношении звена, содержащего четвертичный азот, к тритерпеноиду от 1 до 10.

3. Целевые полимерные водорастворимые производные тритерпеноидов выделяют удалением растворителя. Гомогенность полученных полимерных производных тритерпеноидов установлена методом гель-хроматографии. Состав полученных производных определен методом ПМР-спектроскопии по соотношению интенсивностей сигналов протонов при двойных связях в молекулах тритерпеноидов (в области 4,6-4,8 м.д.) и сигналов протонов в кольце N-винилпирролидона в α-положении к атому азота (в области 3,2 м.д.) [см. фиг.IV-VI].

Водорастворимые сополимеры N-винилпирролидона с аминоалкиловыми эфирами α,β-(метил)акриловых кислот и их четвертичными аммониевыми солями синтезируют известным способом (9. Панарин Е.Ф., Гаврилова И.И./Сополимеры винилпирролидона с диметил- и диэтиламиноэтилметакрилатом) и полиэлектролиты на их основе//Высокомолек. соед. 1977. - том 19(Б) - №4. - С.251-254).

Полученные в соответствии с настоящим изобретением полимерные производные тритерпеноидов приобрели водорастворимость, при этом сохранили специфическую биологическую активность мономерных исходных тритерпеноидов можно ожидать, что их действие в организме будет характеризоваться значительной пролонгацией.

Анализ известного уровня науки и техники в отношении заявленных полимерных водорастворимых производных тритерпеноидов не позволил обнаружить известное решение, совпадающее с заявленным по всей совокупности существенных признаков. Более того, анализ известных публикаций как научных, так и патентных не позволил обнаружить каких-либо сведений о полимерных производных тритерпеноидов. Авторами настоящего изобретения у полученных полимерных тритерпеноидов заявленной структуры in vitro найдено неожиданное свойство - повышение удельной активности в расчете на действующее начало. Это подтверждено примерами конкретного выполнения. Таким образом, можно утверждать не только о соответствии заявленных полимерных водорастворимых производных тритерпеноидов такому условию патентоспособности, как новизна, но такому условию патентоспособности, как изобретательский уровень - неочевидность.

Анализ известного уровня науки и техники относительно способа получения полимерных водорастворимых производных тритерпеноидов также не позволил обнаружить какого-либо известного способа, совпадающего с заявленным по всей совокупности существенных признаков. Таким образом, заявленное решение в отношении независимого пункта формулы, относящегося к способу, соответствует такому условию патентоспособности, как новизна. Наиболее близким по совокупности существенных признаков решением является способ получения полимерных производных антибиотика леворина на основе сополимеров N-винилпирролидона с аминоакрилатами или аминами (10. Авторское свид. СССР №527442, МПК: 2 С 08 F 8/30; С 08 F 226/08; заявлено 18.06.1975; опубликовано 05.09.1976 ), который реализуется следующей совокупностью существенных признаков:

1. Сополимеры N-винилпирролидона с аммониевыми солями аминоалкиловых эфиров метакриловой кислоты, имеющих заместители у атома азота, предпочтительно C12-C16, растворяют в органическом растворителе.

2. К раствору добавляют суспензию леворина в том же растворителе и перемешивают при комнатной температуре.

3. Непрореагировавший леворин отделяют центрифугированием.

4. Из фильтрата удаляют растворитель.

Отличительным признаком заявленного способа является используемое для модификации биологически активное вещество. В известном способе - это антибиотик леворин. В заявленном - тритерпеноиды.

Неожиданным эффектом заявленного способа оказалось существенное увеличение удельной противовирусной активности полученных этим способом полимерных водорастворимых производных тритерпеноидов по сравнению с исходными низкомолекулярными тритерпеноидами. Этого не было найдено в известном способе. Впервые обнаруженная функция заявленного способа подтверждает соответствие решения такому условию патентоспособности, как "изобретательский уровень".

Описание фигур.

Фигура I. Структура заявленного целевого продукта.

Фигура II. Структура полимера-носителя

Фигура III. Структурные формулы тритерпеноидов: бетулиновая {1}, бетулоновая {2}, глицирретовая {3}, глицирризиновая {4}, урсоловая {5}, урсоновая {6} кислоты, олеаноловая {7}, олеаноновая {8}, меристотроповая {9}, дикетомеристотроповая {10}, мацедониковая {11}, дикетомацедониковая {12}, эхиноцистовая {13} кислоты.

Фигура IV. Спектр ПМР бетулиновой кислоты в CDCl3 на осях – х-химический сдвиг (м.д.); у - интенсивность сигнала.

Фигура V. Спектр ПМР исходного сополимера N- винилпирролидона с диметиламиноэтилметакрилатом и димегиллаурилмегакрилоилоксиэтиламмоний иодидом в CDCl3. на осях х-химический сдвиг (м.д.); у интенсивность сигнала.

Фигура VI. Спектр ПМР полимерного производного бетулиновой кислоты на основе сополимера N-винилпирролидона с диметиламиноэтилметакрилатом и диметиллаурилметакрилоилоксиэтиламмоний иодидом в CDCl3 нa осях х - химический сдвиг (м.д.); у - интенсивность сигнала.

Для подтверждения соответствия заявленного решения условию патентоспособности "промышленная применимость" и для лучшего понимания сущности изобретения приводим примеры конкретной реализации изобретения, которые не могут исчерпать сущности предложенного решения.

Пример 1. 3,5 г сополимера N-винилпирролидона (ВП) с диметиламиноэтилметакрилатом (ДМАЭМ) и диметиллаурилметакрилоилоксиэтиламмоний иодидом (ДМАЭМ·C12H25J) (состав тройного сополимера ВП:ДМАЭМ:ДМАЭМ·C12H25J=90,2:6,3:3,5 мол.%, М.М.=18000 Д) растворяют в 300 мл метанола и добавляют 0,44 г бетулиновой кислоты. Смесь перемешивают 1 час. Из фильтрата удаляют растворитель. Получают 3,8 г (выход=96%) полимера, содержащего по данным ПМР 3,5 мол.% бетулиновой кислоты (11,5 маc.%).

Примеры 2-15 выполнены в условиях примера 1, все данные представлены в Таблице 1. Использованы сокращения: ДЭАМА - диэтиламиноэтилмеиакрилат, ДМАЭА - диметиламиноэтилакрилат, ДЭАМК - диметиламиноэтилкротонат. Взаимодействие ведут при 15-30°С в течение 0,5-2 часов.

Противовирусную активность препаратов in vitro в отношении вирусов гриппа А и В (штаммы А/Йоханнесбург В/Йоханнесбург соответственно) исследовали на переживающих фрагментах хорионаллантоисной оболочки куриного эмбриона (ХАО) по методу Fasecas de St. Groth S. (11. Методы испытания и оценки противовирусной активности новых препаратов в отношении вируса гриппа. Ленинград. 1973. 36 с.). Для этого готовили ряд разведений испытуемого препарата на среде, которую разливали в лунки панелей, куда вносили подготовленные кусочки ХАО. Через 1 час контакта при комнатной температуре в эту же среду добавляли по 0,2 мл рабочего (ранее определенного) разведения вируса. Через 48 часов инкубации (при 33-34°С) отмечали количество живых и погибших кусочков. Лунки с погибшими ХАО из опытов исключают. В лунки с живыми кусочками ХАО добавляют 0,1 мл 5% эритроцитов курицы. Контролями при постановке опыта являлись обработанные таким же образом кусочки ХАО, но без добавления препарата. По результатам экспериментов рассчитывали индекс защиты (ИЗ): ИЗ=(КЗ-1)/КЗ×100, где КЗ - коэффициент защиты, определяемый как отношение процента образцов с вирусом в контроле к проценту образцов с вирусом в условиях введения препарата. При этом чем выше значение ИЗ, тем более активно исследуемое вещество. Противовирусную активность in vitro в отношении вируса простого герпеса (12. Вирусология. Методы. / под. Ред. Б. Мейха. М.: “Мир”. 1988. 420 с.) проводили в культуре клеток Vero при заражающей дозе вируса 100 ЦПД 50/мл. Вируссодержащую жидкость вносили в лунки после 30-минутной инкубации клеток с растворами исследуемых веществ. Результаты оценивали через 48 часов культивирования зараженных клеток. Данные по противовирусной активности приведены в Таблице 2. Анализ данных Таблицы 2 подтверждает, что достигнута заявленная задача как в отношении полученных новых полимерных водорастворимых производных, так и в отношении способа их получения.

Таблица 2Противовирусная активность препаратов№ ПримераВеществаДоза, мкг/млДоза по тритерпеноиду, мкг/млИндекс защиты, %А/Йоханнесбург 33/94В/Йоханнесбург 36/94HSV16бетулиновая кислота300
150
75
300
150
75
100
100
70
82
50
25
н.о.
72
10
17бетулоновая кислота300
150
75
300
150
75
100
100
70
100
100
80
н.о.
н.о.
0
18глицирретовая кислота300
150
75
300
150
75
90
75
50
15
0
0
н.о. н.о. н.о.
19поливинилпирролидон600
300
0
0
0
0
0
0
н.о. н.о.
20сополимер винилиирролидона с диметиаминоэтилметакрилатом (состав 90,2:9,8 моль %, мол. м.=18000)600
300
150
0
0
40
20
0
22
0
0
н.о. н.о. н.о.
1полимерное производное бетулиновой кислоты400
200
100
44
22
11
100
100
100
100
100
87
н.о.
100
45
4полимерное производное бетулоновой кислоты300
150
75
33
17
8
100
100
33
100
100
37
н.о.
100 100
7полимерное производное глицериновой кислоты600
300
150
66
33
17
100
74
37
100
100
0
н.о.
80
н.о.
Примечание: н.о. не определяли

Похожие патенты RU2253657C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ВОДОРАСТВОРИМОГО ПРОИЗВОДНОГО БЕТУЛОНОВОЙ КИСЛОТЫ 2009
  • Когай Тамара Ивановна
  • Кузнецов Борис Николаевич
RU2393174C1
СПОСОБ ПОЛУЧЕНИЯ НАТРИЕВОЙ СОЛИ 3-СУЛЬФАТА АЛЛОБЕТУЛИНА 2012
  • Левданский Владимир Александрович
  • Левданский Александр Владимирович
  • Кузнецов Борис Николаевич
RU2482125C1
СПОСОБ ПОЛУЧЕНИЯ НАТРИЕВОЙ СОЛИ 3-СУЛЬФАТА АЛЛОБЕТУЛИНА 2012
  • Левданский Владимир Александрович
  • Левданский Александр Владимирович
  • Кузнецов Борис Николаевич
RU2482126C1
КОНЪЮГАТЫ ТРИТЕРПЕНОВЫХ КИСЛОТ И (Е)-4-(1Н-ИНДОЛ-3-ИЛВИНИЛ)-ПИРИДИНИЙ БРОМИДА С ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 2020
  • Спивак Анна Юльевна
  • Недопёкина Дарья Александровна
  • Давлетшин Эльдар Валерьевич
  • Джемилева Лиля Усеиновна
  • Дьяконов Владимир Анатольевич
  • Джемилев Усеин Меметович
RU2786134C2
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ ИНКАПСУЛИРОВАННУЮ ТРИТЕРПЕНОВУЮ КИСЛОТУ ИЛИ ЕЕ ПРОИЗВОДНЫЕ 2012
  • Клопотенко Леонид Леонидович
RU2516952C1
Композиция для лечения заболеваний кожи и косметического использования 2019
  • Мельникова Нина Борисовна
  • Воробьева Ольга Александровна
  • Соловьева Анна Геннадьевна
  • Перетягин Петр Владимирович
  • Беляева Ксения Леонидовна
  • Малыгина Дарина Сергеевна
  • Клабукова Ирина Николаевна
RU2724342C1
СПОСОБ ПОЛУЧЕНИЯ 3-АЦЕТАТА-28-СУЛЬФАТА БЕТУЛИНА 2012
  • Левданский Владимир Александрович
  • Левданский Александр Владимирович
RU2477285C1
МАЗЬ, СОДЕРЖАЩАЯ ИНКАПСУЛИРОВАННУЮ ТРИТЕРПЕНОВУЮ КИСЛОТУ ИЛИ ЕЕ ПРОИЗВОДНЫЕ 2012
  • Клопотенко Леонид Леонидович
RU2519133C1
СПОСОБ ПОЛУЧЕНИЯ НАТРИЕВОЙ СОЛИ 3-АЦЕТАТА-28-СУЛЬФАТА БЕТУЛИНА 2012
  • Левданский Владимир Александрович
  • Левданский Александр Владимирович
  • Кузнецов Борис Николаевич
RU2482124C1
ЛЕКАРСТВЕННОЕ СРЕДСТВО, ОБЛАДАЮЩЕЕ ГИПОХОЛЕСТЕРИНЕМИЧЕСКИМ, ГИПОЛИПИДЕМИЧЕСКИМ ДЕЙСТВИЕМ 2014
  • Мельникова Нина Борисовна
  • Пегова Регина Александровна
  • Кольчик Ольга Владимировна
  • Жильцова Ольга Евгеньевна
  • Клабукова Ирина Николаевна
RU2582297C1

Иллюстрации к изобретению RU 2 253 657 C2

Реферат патента 2005 года ПОЛИМЕРНЫЕ ВОДОРАСТВОРИМЫЕ ПРОИЗВОДНЫЕ ТРИТЕРПЕНОИДОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Описаны полимерные производные тритерпеноидов общей формулы I

где в качестве полимера-носителя берут водорастворимые сополимеры N-винилпирролидона с алкиловыми эфирами α,β-(метил)акриловых кислот и их четвертичными аммониевыми солями общей формулы II

при этом А - остаток тритерпеноида из ряда, содержащего бетулиновую {1}, бетулоновую {2}, глицирретовую {3}, глицирризиновую {4}, урсоловую {5}, урсоновую {6}, олеаноловую {7}, олеаноновую {8}, меристотроповую {9}, дикетомеристотроповую {10}, мацедониковую {11}, дикетомацедониковую {12}, эхиноцистовую {13} кислоты, или смесь вышеуказанных карбоксилсодержащих тритерпеноидов; при этом – R1 - Н, СН3; R2 - Н, СН3; R3 – СН3, С2Н5; R4 - алкил из ряда С6Н1316Н33; Hal - J, Br или Cl; k=65-95 мол. %; l=0,1-34 мол.%, m=0,1-33,9 мол. %, n=0,5-5,4 мол.%; молекулярная масса (ММ)=(7-100)·103 дальтон. Способ получения полимерных производных тритерпеноидов заявленного строения реализуют взаимодействием тройного сополимера со структурой II, где k=65-95 мол.%; l=0,1-34 мол.%; х=1,0-34,9 мол.%; R1 - Н, СН3; R2 - Н, СН3; R3 – СН3, С2Н5; R4 - алкил из ряда С6Н1316Н33; Hal=J, Br, Cl; MM=(7-100)·103 дальтон с тритерпеноидом с получением целевого продукта. Взаимодействие с тритерпеноидом проводят в органическом растворителе при концентрации тройного сополимера 1-30 мас.%, концентрации тритерпеноида 0,05-3,4 мас. %; молярном отношении звена, содержащего четвертичный азот, к тритерпеноиду от 1 до 10; целевые полимерные водорастворимые производные тритерпеноидов выделяют удалением растворителя. 1 н.п. ф-лы, 2 табл., 6 ил.

Формула изобретения RU 2 253 657 C2

1. Полимерные производные тритерпеноидов общей формулы (I)

где в качестве полимера-носителя берут водорастворимые сополимеры N-винилпирролидона с алкиловыми эфирами α,β-(метил)акриловых кислот и их четвертичными аммониевыми солями общей формулы (II)

при этом А - остаток тритерпеноида из ряда, содержащего бетулиновую {1}, бетулоновую {2}, глицирретовую {3}, глицирризиновую {4}, урсоловую {5}, урсоновую {6}, олеаноловую {7}, олеаноновую {8}, меристотроповую {9}, дикетомеристотроповую {10}, мацедониковую {11), дикетомацедониковую {12}, эхиноцистовую {13} кислоты или смесь вышеуказанных карбоксилсодержащих тритерпеноидов

R1 - H, СН3; R2 - H, СН3; R3 – СН3, С2Н5;

R4 - алкил из ряда С6Н1316Н33; Hal - J, Br или Cl; k=65-95 мол.%; 1=0,1-34 мол.%, m=0,1-33,9 мол.%, n=0,5-5,4 мол.%; молекулярная масса (ММ)=(7-100)·103 дальтон.

2. Способ получения полимерных производных тритерпеноидов по п.1, включающий взаимодействие в органическом растворителе тройного сополимера формулы (II), где k=65-95 мол.%; l=0,1-34 мол.%; х=1,0-34,9 мол.%; R1 - Н, СН3; R2 - Н, СН3; R3 – СН3, С2Н5; R4 - алкил из ряда С6С1316Н33; Hal - J, Вr, Сl; ММ=(7-100)·103 Дальтон, с тритерпеноидом с получением целевого продукта формулы (I), где А - остаток тритерпеноида из ряда, содержащего бетулиновую {1}, бетулоновую {2}, глицирретовую {3}, глицирризиновую {4}, урсоловую {5}, урсоновую {6}, олеаноловую {7}, олеаноновую {8}, меристотроповую {9}, дикетомеристотроповую {10}, мацедониковую {11}, дикето-мацедониковую {12}, эхиноцистовую {13} кислоты или смесь вышеуказанных карбоксилсодержащих тритерпеноидов (III); R1 - Н, СН3; R2 - Н, СН3: R3 – СН3, С2Н5; R4 - алкил из ряда С6Н1316Н33; Hal - J, Вr или С1; k=65-95 мол.%; l=0,1-34 мол.%, m=0,1-33,9 мол.%, n - 1-5,4 мол.%; молекулярная масса (MM)=(7-100)·103 Дальтон, взаимодействие с тритерпеноидом проводят в растворе при концентрации тройного сополимера 1-30 мас.%, концентрации тритерпеноида 0,05-3,4 мас.%; молярном отношении звена, содержащего четвертичный азот, к тритерпеноиду от 1 до 10 при температуре 15-30°С в течение 0,5-2 ч; целевые полимерные водорастворимые производные тритерпеноидов выделяют удалением растворителя.

Документы, цитированные в отчете о поиске Патент 2005 года RU2253657C2

US 6048847 А, 11.04.2000
Способ получения водорастворимых биологически активных полимеров 1975
  • Панарин Евгений Федорович
  • Реди Нэлли Семеновна
SU527442A1
Платонов В.Г
и др
Исследование противогриппозной активности терпеноидов
Химико-фармац
Журнал, 1995, №2, с.35-42.

RU 2 253 657 C2

Авторы

Назарова О.В.

Зорина А.Д.

Панарин Е.Ф.

Киселев О.И.

Боков С.Н.

Платонов В.Г.

Слита А.В.

Зарубаев В.В.

Афанасьева Е.В.

Даты

2005-06-10Публикация

2002-07-08Подача