СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА Российский патент 2005 года по МПК B01D39/02 B01J20/02 

Описание патента на изобретение RU2256482C1

Изобретение относится к получению гранулированного материала и может быть использовано в технологии очистки природных вод для хозяйственно-питьевого водоснабжения и очистки сточных вод в фильтровальных сооружениях.

Известен способ получения гранулированного фильтрующего материала [1], включающий введение в суспензию из каолина неорганической добавки - порошкообразного доломита в количестве 20-25% от массы каолина, гранулирование смеси и обжиг гранул при температуре 900…950°С.

Однако фильтрующий материал, полученный указанным способом, не обеспечивает требуемой эффективности очистки воды от гумусовых, взвешенных веществ, ионов тяжелых металлов из-за недостаточно высокой силы адгезии частиц загрязнений, извлекаемых из воды, к поверхности зерен фильтрующего материала и небольшой продолжительности фильтроцикла, в течение которого обеспечивается необходимая степень очистки воды.

Известен также способ получения гранулированного фильтрующего материала [2], включающий введение в суспензию из каолина неорганической добавки - карбоната магния в количестве 15…30% от массы суспензии с последующей грануляцией и обжигом при температуре 850…900°С.

Однако фильтрующий материал, полученный указанным способом, не обеспечивает требуемой эффективности очистки природной воды при высокой цветности ее, обусловленной гумусовыми веществами, а также очистки промышленных сточных вод при высокой концентрации ионов тяжелых металлов.

Известен способ получения гранулированного фильтрующего материала [3], включающий введение в глинистую суспензию порошкообразного доломита в количестве 15…18% от массы глины, с последующей ее грануляцией и обжигом при температуре 800…880°С.

Однако фильтрующий материал, полученный указанным способом, не обеспечивает требуемой эффективности очистки природных вод с высокой концентрацией гумусовых веществ, обуславливающих цветность их, а также сточных вод, имеющих в своем составе такие ионы тяжелых металлов, как цинк, медь, никель, свинец, кадмий и др.

Известен также способ получения гранулированного фильтрующего материала [4], включающий введение в глинистую суспензию порошкообразного доломита в количестве 10…20% от массы глины, механическое обезвоживание суспензии с формованием, подсушивание сформованной смеси при температуре 200…400°С, дробление подсушенных форм на гранулы и обжигом гранулированного материала при температуре 800…900°С (прототип). Способ позволяет получить гранулированный фильтрующий материал, обеспечивающий хорошую очистку природных и сточных вод от загрязнений.

Однако в результате гранулирования дроблением подсушенных форм, пригодных для дальнейшего изготовления фильтрующего материала, гранул крупностью 0,5…2,0 мм в общей массе дробленого полуфабриката содержалось всего лишь не более 18-20%.

Кроме того, при обжиге полученной раздробленной смеси часть гранул из диапазона крупности от 0,5 до 2,0 мм (18-20% от общей массы дробленого полуфабриката) разрушалась в связи с тем, что при термическом разложении карбонатов магния и кальция выделялось значительное количество углекислого газа (СO2), который при выделении из тела гранулы разрушал непрочную ее структуру, полученную при механическом обезвоживании гомогенной смеси глины и порошкового доломита.

Задачей изобретения является создание способа получения гранулированного фильтрующего материала, обеспечивающего высокую степень и эффективность очистки различных вод от гумусовых, взвешенных веществ, ионов тяжелых металлов с одновременным увеличением прочности и процента “выхода” в результате дробления форм нужных фракций гранулированного материала, используемого в качестве фильтрующего при очистке природных и сточных вод.

Поставленная задача решается тем, что в предлагаемом способе получения гранулированного фильтрующего материала, включающем введение в глинистую суспензию порошкообразного доломита (карбонатной соли магния и кальция) в количестве 10…20 вес.% от массы глины с последующим обезвоживанием смеси, грануляцией и обжигом при температуре 800…900°С, обезвоживание смеси производят термическим путем и перед гранулированием производят формование смеси механическим прессованием.

Термически обезвоженную смесь механически прессуют при давлении 200…350 кг/см2.

Новым по сравнению с прототипом является термическое обезвоживание и формование механическим прессованием при давлении 200…350 кг/см2. Поэтому данное техническое решение соответствует критерию изобретения “новизна”.

Благодаря тому, что суспензию, содержащую 10…20% порошкообразного доломита, термически обезвоживали, прессовали, дробили и полученные гранулы обжигали при температуре 800…900°С, получали прочный, пористый фильтрующий материал с высокой сорбционной емкостью поглощения загрязнений.

Достижение таких результатов за счет введения в суспензию порошкообразного доломита в количестве 10…20% от массы глины, термического обезвоживания полученной смеси, механического прессования при давлении 200…350 кг/см2, дробления сформованной массы на гранулы и последующего обжига их при температуре 800…900°С не следует для специалиста явным образом из известного уровня техники, поэтому данное техническое решение соответствует критерию “изобретательский уровень”.

Для изготовления в лабораторных условиях фильтрующего материала по предлагаемому способу в качестве глинистого сырья используют кембрийскую глину нижеследующего химического состава: SiO2 - 59,4%, Аl2O3 - 33,2%, Fе2О3 - 3,1%, MgO - 0,92%, CaO - 0,43%, Na2O - 0,15%, К2О - 0,1%. В качестве активирующей добавки был принят доломит Витебский в виде доломитовой муки.

Для приготовления шликера было взято 4 кг кембрийской глины влажностью 8%, размолотой в лабораторной шаровой мельнице. К полученной глиняной муке была добавлена доломитовая мука в количестве 0,60 кг (15 вес.% от массы глины). Сухая смесь была тщательно перемешана до гомогенного состояния, после чего разбавлена водой до состояния шликера влажностью 60%.

Шликер был термически обезвожен в сушильном шкафу и размолот в шаровой мельнице до консистенции мелкогранульного порошка.

Для установления оптимального давления при механическом прессовании 8 порций по 0.5 кг мелкогранульного порошка термически обезвоженной гомогенной смеси поочередно ставили под пресс и подвергали прессованию при давлениях 100, 150, 200, 250, 300, 300, 350, 400, 450 кг/см2. Полученные после прессования при указанных давлениях плитки сначала разбивали на кусочки, а затем дробили в ручной кофемолке.

Критерием оценки достаточности величины силы механического прессования порошка гомогенной смеси глины и активатора служил процент выхода пригодной для использования в качестве фильтрующего материала фракции из общей массы раздробленного полуфабриката (0,5…2,0 мм). Весовое и процентное количество годной фракции определялось последовательным просеиванием продуктов дробления каждой порции прессованного мелкогранульного порошка через 2 сита: с ячейками 2,0 мм и 0,5 мм. Материал, прошедший через сито с ячейкой 2,0 мм и оставшийся на сите 0,5 мм считался пригодным для дальнейшей термообработки его.

Результаты определений процента выхода годной фракции из общего количества раздробленного материала при каждом значении усилия прессования (кг/см2) представлены в табл.1.

Таблица 1Усилия прессования, кг/см2100150200250300350400450процент выхода гранул21,030,339,841,442,643,544,245,0крупностью 0.5…2.0 мм        от общего количества        раздробленной партии        материала        

Из данной табл. 1 следует, что при усилии прессования 100 и 150 кг/см2 потери гранулированного материала на измельчение в пыль (гранулы мельче 0.5 мм) велики, что экономически невыгодно. При усилии прессования от 200 до 350 кг/см2 суммарные потери материала значительно ниже. Показатели “выхода” годной фракции вполне приемлемы. Увеличение усилия прессования от 350 до 450 кг/см2 не дает заметного прироста “выхода” фракции крупностью 0,5…2,0 мм. Поэтому усилие прессования 200…350 кг/см2 для последующего гранулирования материала дроблением принято как наиболее оптимальное.

Раздробленные при усилии предварительного прессования от 200 до 350 кг/см2 и отсортированные просеиванием через сита с ячейкой 2,0 и 0,5 мм навески материала были обожжены в муфельной печи при температуре 850°С.

Для сравнительной оценки фильтрующих свойств материала, изготовленного по предложенному способу, был также изготовлен фильтрующий материал по способу, принятому за прототип при нижеследующих характеристиках: сырье - кембрийская глина с тем же самым химическим составом, активирующая добавка - доломитовая мука, в количестве - 15% вес от массы глины, температура предварительного подсушивания 400°С, температура обжига 850°С.

Способность фильтрующего материала, изготовленного согласно предложенному способу, к извлечению из воды различных загрязнений определяли на фильтрационном стенде.

Для получения сравнительных результатов технологических испытаний параллельно проводилось фильтрование через фильтрующий материал - прототип.

Фильтрационный стенд состоял из 2-х бутылей Мариотта и двух фильтровальных колонок длиной L=500 мм, диаметром D=32 мм. Крупность зерен на обеих колонках составляла dcp=1,0 мм, толщина фильтрующего слоя l=350 мм. Скорость фильтрования была принята 3 м/ч.

Было проведено 2 этапа фильтровальных испытаний.

На 1-м этапе для исследования была взята природная вода с цветностью 110 градусов, мутностью 6 мг/л. На втором этапе фильтрационных испытаний был использован имитат стока, в котором содержались ионы никеля в количестве 14,5 мг/л, взвешенных веществ было 15 мг/л.

Критерием эффективности очистки воды от цветности служит степень обесцвечивания воды и продолжительность фильтроцикла, в течение которого исходная вода очищается до требований СанПиН 2.1.4.1074.01 “Питьевая вода”, а при очистке стока определяющим эффективность очистки критерием служит степень очистки стока от ионов никеля.

Результаты технологических испытаний на обоих этапах представлены в табл. 2 и 3.

Таблица 2.Время от начала фильтроцикла, часЭффективность обесцвечивания воды фильтрующими материалами, градус цветности фильтратафильтрующий материал, изготовленный по предлагаемому способуфильтрующий материал, изготовленный в соответствии с прототипом110102101031011410125111461217714188142091523101527111730121835132040142346152650Таблица 3.Время от начала фильтроцикла, часЭффективность извлечения ионов никеля из стока фильтрующими материалами, мг/л Ni24" в фильтратефильтрующий материал, изготовленный по предлагаемому способуфильтрующий материал, изготовленный в соответствии с прототипом10,0060,0120,0080,0130,0080,01540,010,01850,0150,02060,0180,02470,0180,02780,020,03290,0220,04100,250,046110,030,054

Технологические испытания по очистке природной воды от цветности показывают, что продолжительность фильтрования, в течении которого вода обесцвечивается до требований СанПиН 2.1.4.1074-01 (20 градусов) на фильтрующем материале, изготовленном по предлагаемому способу при добавке доломита к глине в количестве 15 вес.% от массы глины, в 1,6 раза больше чем на материале, изготовленном в соответствии с прототипом (кембрийская глина с добавкой доломита в количестве 15% от массы глины с механическим обезвоживанием шликера подсушиванием до 400°С, дроблением и обжигом при t=850°C).

Из данных табл. 3, в которой приведены результаты фильтрования имитата стока, содержащего ионы тяжелого металла - никеля, следует, что материал, изготовленный по предлагаемому способу, значительно эффективнее очищает сток от ионов никеля, чем материал, изготовленный в соответствии с прототипом. Продолжительность фильтроцикла до момента достижения одинакового уровня проскока никеля в фильтрате на фильтрующем материале, изготовленном по предлагаемому способу, была в 1,8…2,0 раза больше чем на материале, изготовленном в соответствии с прототипом.

Кроме того, процент выхода готовой продукции (кондиционированного фильтрующего материала) из единицы объема смеси глинистого сырья и активатора при изготовлении материала по предлагаемому способу был в 2,1…2,2 раза выше, чем при изготовлении по способу, принятому за прототип, что неизбежно приводит к существенному снижению себестоимости изготовленной продукции.

Источники информации

1. Авторское свидетельство СССР № 1243807, кл. В 01 J 20702, 1984 г.

2. Авторское свидетельство СССР № 1152650, кл. В 01 J 20/02, 1984 г.

3. Патент РФ № 2077380, кл. В 01 J 20/02, 1994 г.

4. Патент РФ № 22/6385, кл. В 01 J 20/02, 2002 г.

Похожие патенты RU2256482C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2002
  • Петров Е.Г.
RU2216385C2
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 1994
  • Петров Евгений Георгиевич
RU2077380C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2008
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
RU2375101C1
ГРАНУЛИРОВАННЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2010
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
RU2433853C1
ГРАНУЛИРОВАННЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2014
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Вобликова Дарья Васильевна
  • Ершова Софья Александровна
  • Крапивная Тамара Анатольевна
  • Шевцова Елена Николаевна
RU2553896C1
Способ получения гранулированного фильтрующего материала 1982
  • Петров Евгений Георгиевич
  • Дикаревский Виталий Сергеевич
  • Павлов Михаил Спиридонович
  • Москалев Николай Ворфоломеевич
  • Левитин Сергей Михалович
SU1264969A1
Способ получения гранулированного фильтрующего материала для очистки воды 1982
  • Петров Евгений Георгиевич
  • Дикаревский Виталий Сергеевич
  • Павлов Михаил Спиридонович
  • Стасюк Ипполит Игоревич
  • Левитин Сергей Михайлович
  • Левин Владимир Ильич
SU1033179A1
Способ получения гранулированного фильтрующего материала 1984
  • Петров Евгений Георгиевич
  • Дикаревский Виталий Сергеевич
  • Левитин Сергей Михайлович
  • Муратова Валентина Олеговна
  • Смирнова Ольга Юрьевна
SU1264970A1
ВЯЖУЩЕЕ ДЛЯ КЛАДОЧНЫХ РАСТВОРОВ 2003
  • Шильникова Г.П.
  • Капцанова Н.С.
  • Зубарев А.В.
RU2255915C1
КЕРАМИЧЕСКАЯ МАССА 2009
  • Сватовская Лариса Борисовна
  • Масленникова Людмила Леонидовна
  • Бабак Наталья Анатольевна
  • Капустина Ольга Александровна
RU2416585C1

Реферат патента 2005 года СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА

Изобретение относится к способу получения гранулированного фильтрующего материала и может быть использовано в технологии очистки вод. Способ получения гранулированного фильтрующего материала включает введение в глинистую суспензию порошкообразного доломита (карбонатной соли магния и кальция) в количестве 10…20 вес.% от массы глины, термическое обезвоживание, прессование смеси и обжиг при температуре 800…900°С. Обезвоженную смесь механически прессуют, предпочтительно, при давлении 200…350 кг/см2. Технический результат - повышение эффективности очистки различных вод полученным материалом от гумусовых, взвешенных веществ, ионов тяжелых металлов с одновременным увеличением прочности и процента “выхода” материала. 1 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 256 482 C1

1. Способ получения гранулированного фильтрующего материала, включающий введение в глинистую суспензию порошкообразного доломита в количестве 10…20 вес.% от массы глины, обезвоживание смеси, формование, дробление, обжиг при 800-900°С, отличающийся тем, что обезвоживание смеси производят термическим путем, а формование осуществляют путем механического прессования обезвоженной мелкогранульной смеси.2. Способ по п.1, отличающийся тем, что смесь механически прессуют при давлении 200…350 кг/см2.

Документы, цитированные в отчете о поиске Патент 2005 года RU2256482C1

СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2002
  • Петров Е.Г.
RU2216385C2
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 1994
  • Петров Евгений Георгиевич
RU2077380C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ 2002
  • Рыков П.В.
  • Кондратенко А.Н.
RU2206536C1
КЕРАМИЧЕСКАЯ МАССА ДЛЯ ОБЛИЦОВОЧНЫХ ИЗДЕЛИЙ 1996
  • Качурин Н.М.
  • Рябов Р.Г.
  • Горбачева М.И.
  • Рябов Г.Г.
  • Егорычев Л.К.
  • Коноплев В.И.
RU2099307C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2000
  • Коробочкин В.Г.
  • Красный Б.Л.
  • Журавлев С.А.
RU2182568C2

RU 2 256 482 C1

Авторы

Петров Е.Г.

Чепелев А.Д.

Петрова А.Г.

Семенов Е.В.

Даты

2005-07-20Публикация

2004-03-24Подача