ПИРОМЕТАЛЛУРГИЧЕСКАЯ УСТАНОВКА ДЛЯ ОБОГАЩЕНИЯ ТИТАНОКРЕМНЕЗЕМИСТЫХ КОНЦЕНТРАТОВ Российский патент 2005 года по МПК C22C33/04 F27B3/08 

Описание патента на изобретение RU2258759C1

Изобретение относится к пирометаллургической технологии и используется в основном при обогащении титано-кремнеземистых концентратов.

Известна установка дуговой трехфазной электропечи, на которой был опробован "Способ обогащения титано-кремнистых концентратов" по патенту №2220222 С1 с приоритетом от 16.09.2002 г., основанный на создании на дне печи слоя жидкого металла, на который подают шихту титано-кремнеземистого концентрата и расплавлении его на две раздельные по плотности жидкие фазы, содержащая цилиндрический корпус, свод, через отверстия которого пропущены графитизированные электроды, и блок питания, подключенный к графитизированным электродам (см., например, "Технология металлов и конструкционные материалы." под редакцией проф. Б.А.Кузьмина, Москва, "Машиностроение", 1989 г., стр.70, рис.4.7).

Данная установка является прототипом.

Недостаток известной установки состоит в том, что в процессе плавки наблюдается повышенный пылеунос, отсутствует активное перемешивание расплава и наблюдается повышенный удельный расход электродов.

Наиболее напряженным этапом плавки является начальный период плавки, когда дуги горят неустойчиво и требуется более высокое напряжение холостого хода трансформатора, вызывающее сильную вибрацию электродов и электрододержателей, что увеличивает вероятность поломки электродов с соответствующим снижением технико-экономических показателей плавки в целом.

Предложенное изобретение свободно от вышеперечисленных недостатков.

Пирометаллургическая установка для обогащения титано-кремнеземистых концентратов, содержащая цилиндрический корпус печи, блок питания и графитизированный электрод, установленный в печи через отверстие свода, отличающаяся тем, что она снабжена транспортным средством и приспособлением для формирования токопроводящего канала, выполненного в виде цилиндра с радиальными ребрами, внутренний диаметр которого равен двум диаметрам электрода, и установленного на дне печи, причем графитизированный электрод установлен в корпусе печи коаксиально при соотношении внутреннего диаметра печи к диаметру электрода, равном 2:8, при этом корпус печи выполнен в виде водоохлаждаемого кристаллизатора, установлен на транспортном средстве и подключен к минусу, а электрод - к плюсу блока питания постоянного тока, причем приспособление для создания токопроводящего канала выполнено в виде цилиндра, жестко соединенного с радиальными пластинами, при этом сумма длин двух радиальных пластин плюс диаметр цилиндра равна внутреннему диаметру цилиндрической печи, выполненной в виде водоохлаждаемого кристаллизатора.

Использование данной печи постоянного тока уменьшает пылеобразование из-за отсутствия магнитогидродинамических пульсаций давления и устраняет растворение материала футеровки в продуктах плавки.

Сущность изобретения поясняется чертежами, где фиг.1 схематично изображена пиротехническая установка, предназначенная для обогащения титановых концентратов. На фиг.2 схематично изображено приспособление для формирования токопроводящего канала, расположенного на дне водоохлаждаемого кристаллизатора. На фиг.3 изображен вид сверху приспособления для формирования токопроводящего канала.

Обозначения на чертеже следующие.

На транспортном средстве, выполненном в виде тележки 1 с тросовым приводом, установлен водоохлаждаемый кристаллизатор 2 из меди, электрически связанный через блок питания 3 постоянного тока с графитизированным электродом 4, причем минус блока питания 3 подключен к водоохлаждаемому кристаллизатору 2, а плюс - к графитизированому электроду 4, установленному коаксиально через отверстие свода 5 водоохлаждаемому кристаллизатору 2. Пиротехническая установка дополнительно снабжена приводом 6 возвратно-поступательного движения графитизированного электрода 4, приводом 7 перемещения водоохлаждаемого свода 5 и приспособлением для формирования токопроводящего канала, выполненного в виде полого цилиндра 8, жестко соединенного с радиальными пластинами 9, причем сумма двух радиальных пластин 9 и диаметра полого цилиндра 8 равна внутреннему диаметру водоохлаждаемого кристаллизатора 2. Соотношение внутреннего диаметра кристаллизатора к диаметру электрода, равное 2-8, выбрано из условия оптимизации процесса плавки концентрата в печи. При соотношении, меньшем 2-х, возникает перегрев электрода из-за превышения допустимой плотности тока в электроде. При соотношении, большем 8-ми, становятся недопустимо большими потери тепла теплопроводностью по телу массивного электрода.

Установка работает следующим образом.

В плавильном отделении с помощью крана опускают на дно водоохлаждаемого кристаллизатора 2, установленного на тележке 1 и находящегося в зоне подготовки водоохлаждаемого кристаллизатора 2 к плавке, приспособление для формирования токопроводящего канала. В полый цилиндр 8 засыпают исходную шихту с содержанием коксика не менее 33% от массы концентрата, которая является основой токопроводящего канала, а в сектора, образованные радиальными пластинами 9, наружной поверхностью полого цилиндра 8 и внутренней поверхностью водоохлаждаемого кристаллизатора 2, заполняют исходной шихтой с содержанием коксика 5-6% от массы концентрата, которая при комнатной температуре не электропроводна. Диаметр токопроводящего канала, соответствующий внутреннему диаметру полого цилиндра 8, пропорционален внутреннему диаметру водоохлаждаемого кристаллизатора 2:

Двнутр. цилин.=К×Дкрист., где К=((%С)шихта)×(%С)канал)0,5

Например, при диаметре водоохлаждаемого кристаллизатора 2, равному 1,6 м, диаметре графитизированного электрода 350 см и концентрациях коксика в рабочей шихте и в шихте электропроводного канала, равным 6% и 33%, соответственно диаметр токопроводящего канала составит 0,714 м. Диаметр токопроводящего канала можно принять примерно равным удвоенному диаметру графитизированного электрода 4. После заполнения пустот приспособления для формирования токопроводящего канала составами шихты его извлекают из водоохлаждаемого кристаллизатора 2. Подготовленный водоохлаждаемый кристаллизатор 2 закатывают на рабочее место и сверху с помощью привода 7 его перекрывают водохлаждаемым сводом 5. После уплотнения зазора между сводом и кристаллизатором включают газоочистку печи, блок питания 3 устанавливают на максимальную мощность, равную 3000 Вт/ч, графитизированный электрод 4 с помощью привода 6 опускают до соприкосновения с шихтой на дне кристаллизатора и зажигания устойчивой дуги при напряжении холостого хода блока питания 3, равном 300 В, и токе, равным 10 кА. По мере проплавления токопроводящего канала снижают напряжение до 150 В, а силу тока увеличивают до 20 кА и продолжают плавку до появления жидкой фазы кремнеземистого шлака, в которую заглублена часть графитизированного электрода 4. После этого снижают напряжение до 75 В, а силу тока увеличивают до 40 кА и продолжают плавку до появления полностью жидкой фазы кремнеземистого шлака. Весь процесс плавки шихты в кристаллизаторе длится 1,2-1,5 часа. После этого в печь подают шихту с содержанием 5-6% коксика и снижают потребляемую мощность. Загрузку печи осуществляют переодически, порциями по 50-150 кг, сообразуя подачу шихты с расходом электроэнергии и визуальным наблюдением за проплавлением шихты, не допуская "раскрытие" колошника, т.е. поверхность расплава должна быть закрыта слоем непроплавленной шихты. Одновременно с плавлением загружаемой исходной шихты осуществляют плавный подъем электрода. Длительность этого периода плавки составляет 11-12 часов.

Для выведения усадочной раковины титанистой части блока и создания ровной поверхности раздела титанистой и силикатной частей шлакового блока в конце плавки проводят постепенное уменьшение снимаемой мощности в течение 1,5-2 часов. При завершении плавки прекращается подача шихты в печь и проводится проплавление колошника печи для более полного осаждения капель титанистого шлака из силикатного шлака и соответственно для максимально возможного разделения титанистого и кремнистого шлаков. После окончания плавки печь обесточивается и кристаллизатор без отключения водяного охлаждения выкатывают и на его место закатывают другой кристаллизатор с подготовленным шихтовым слоем и начинают новую плавку. Длительность смены кристаллизатора должна быть максимально короткой для уменьшения простоев и сохранения физического тепла массивного электрода.

После выкатки из печи шлаковый блок охлаждается в кристаллизаторе при подаче воды 2-4 часа до температуры около 500 градусов для надежного затвердения всей массы блока, но не доводя до растрескивания его на отдельные фрагменты, а затем снимают с него кристаллизатор без отключения подачи в него воды. При этом непрореагировавшая шихта и частично гарнисаж осыпаются и собираются в специальный контейнер, куда засыпают также механически отделяемый гарнисажный слой, которые затем взвешиваются и подаются на следующую плавку. После чего на шлаковый блок краном одевается специальная транспортная оболочка с устройством захвата и слиток опускается набок. Со дна слитка также отбивается гарнисажный слой, который присоединяется к материалу бокового гарнисажа, затем слиток краном помещают на поддон, установленный на транспортной тележке, и вывозится в остывочный пролет, где происходит его остывание и последующая разделка.

Данная установка позволяет осуществить направленную кристаллизацию титанового шлака при наплавлении двухслойного шлакового слитка в водохлаждаемый кристаллизатор. При этом более тугоплавкие кристаллы оксидов титана кристаллизуются первыми и оттесняют более легкий силикатный расплав вверх, а сам процесс расслоения осуществляется при минимально возможной температуре, что само по себе способствует повышению концентрации оксидов титана в шлаке. Кроме того, проведение дуговой плавки при полярности минус на кристаллизаторе плюс на электроде вызывает дополнительное удаление вредных оксидов железа из шлака в металл, а оксида кремния - в улет в виде монооксида кремния из-за электролитических явлений. Кроме того, наличие постоянного электрического тока указанной полярности ускоряет оседание капель электропроводного титанистого шлака из силикатного шлака с преимущественно ионной проводимостью и уменьшает пылеобразование. Все вышеперечисленное позволяет поднять концентрацию оксидов титана до 91-95% без дополнительных мер по обогащению.

Похожие патенты RU2258759C1

название год авторы номер документа
СПОСОБ ОБОГАЩЕНИЯ ТИТАНОКРЕМНЕЗЕМИСТЫХ КОНЦЕНТРАТОВ 2004
  • Баканов В.К.
  • Федун М.П.
  • Павлов А.В.
  • Григорян В.А.
  • Пастихин В.В.
RU2258760C1
СПОСОБ ОБОГАЩЕНИЯ ТИТАНОКРЕМНИСТЫХ КОНЦЕНТРАТОВ 2002
  • Баканов В.К.
  • Федун М.П.
  • Павлов А.В.
  • Григорян В.А.
  • Пастихин В.В.
RU2220222C1
СПОСОБ ПЕРЕРАБОТКИ КВАРЦ-ЛЕЙКОКСЕНОВОГО КОНЦЕНТРАТА 2004
  • Федун М.П.
  • Баканов В.К.
  • Пастихин В.В.
  • Чистов Л.Б.
  • Охрименко В.Е.
  • Штейникова А.И.
  • Георгиади Е.К.
RU2262544C1
СПОСОБ ПЕРЕРАБОТКИ ТИТАНКРЕМНИЙСОДЕРЖАЩИХ КОНЦЕНТРАТОВ 2003
  • Федун М.П.
  • Баканов В.К.
  • Охрименко В.Е.
  • Георгиади Е.К.
  • Чистов Л.Б.
  • Пастихин В.В.
RU2250926C1
СПОСОБ ПЕРЕРАБОТКИ ТИТАН-КРЕМНИЙСОДЕРЖАЩИХ КОНЦЕНТРАТОВ 2004
  • Федун М.П.
  • Баканов В.К.
  • Пастихин В.В.
  • Чистов Л.Б.
  • Юфряков В.А.
  • Охрименко В.Е.
RU2264478C1
СПОСОБ ПОЛУЧЕНИЯ ИСКУССТВЕННОГО РУТИЛА ИЗ ЛЕЙКОКСЕНОВОГО КОНЦЕНТРАТА 2002
  • Садыхов Гусейнгулу Бахлул Оглы
  • Зеленова И.М.
  • Баканов В.К.
  • Федун М.П.
RU2216517C1
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ КОМПЛЕКСНЫХ РУД 2011
  • Рощин Василий Ефимович
  • Рощин Антон Васильевич
  • Рощин Егор Васильевич
RU2460813C1
СПОСОБ ПЕРЕРАБОТКИ ВОЛЬФРАМОВЫХ КОНЦЕНТРАТОВ 2005
  • Трегубенко Виктор Васильевич
  • Корзун Виктор Казимирович
  • Горбачев Михаил Ильич
  • Сухарьков Петр Иванович
  • Москаленко Сергей Александрович
RU2296173C2
СПОСОБ ДЕФОСФОРАЦИИ СПЛАВОВ 2006
  • Павлов Вячеслав Владимирович
  • Козырев Николай Анатольевич
  • Моисеев Олег Борисович
  • Келлер Валерий Яковлевич
RU2345147C2
СПОСОБ ПЕРЕРАБОТКИ НЕФТЕТИТАНОВЫХ ЛЕЙКОКСЕНОВЫХ КОНЦЕНТРАТОВ 2007
  • Аладьин Анатолий Венедиктович
  • Пастихин Валерий Васильевич
  • Ардасов Георгий Владимирович
  • Агеев Сергей Викторович
  • Москвичев Юрий Петрович
  • Молодов Игорь Алексеевич
RU2334799C1

Иллюстрации к изобретению RU 2 258 759 C1

Реферат патента 2005 года ПИРОМЕТАЛЛУРГИЧЕСКАЯ УСТАНОВКА ДЛЯ ОБОГАЩЕНИЯ ТИТАНОКРЕМНЕЗЕМИСТЫХ КОНЦЕНТРАТОВ

Изобретение относится к пирометаллургической технологии и используется в основном при обогащении титано-кремнеземистых концентратов. Пирометаллургическая установка содержит цилиндрический корпус печи, блок питания и графитизированный электрод, установленный в печи через отверстие свода. Установка снабжена транспортным средством и приспособлением для формирования токопроводящего канала, выполненного в виде цилиндра с радиальными ребрами, внутренний диаметр которого равен двум диаметрам электрода, и установленного на дне печи. Графитизированный электрод установлен в корпусе печи коаксиально при соотношении внутреннего диаметра печи к диаметру электрода, равном 2:8, при этом корпус печи выполнен в виде водоохлаждаемого кристаллизатора, установлен на транспортном средстве и подключен к минусу, а электрод - к плюсу блока питания постоянного тока. Радиальные пластины приспособления для формирования токопроводящего канала жестко соединены с цилиндром, причем длина двух радиальных пластин плюс наружный диаметр цилиндра соответствует внутреннему диаметру печи. Изобретение позволяет в начальный период плавки снизить вероятность поломки электродов с соответствующим снижением технико-экономических показателей плавки в целом. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 258 759 C1

1. Пирометаллургическая установка для обогащения титанокремнеземистых концентратов, содержащая цилиндрический корпус печи, блок питания и графитизированный электрод, установленный в печи через отверстие свода, отличающаяся тем, что она снабжена транспортным средством и приспособлением для формирования токопроводящего канала, выполненного в виде цилиндра с радиальными ребрами, внутренний диаметр которого равен двум диаметрам электрода, и установленного на дне печи, причем графитизированный электрод установлен в корпусе печи коаксиально при соотношении внутреннего диаметра печи и диаметра электрода, равном 2:8, при этом корпус печи выполнен в виде водоохлаждаемого кристаллизатора, установлен на транспортном средстве и подключен к минусу, а электрод - к плюсу блока питания постоянного тока.2. Пирометаллургическая установка по п.1, отличающаяся тем, что радиальные пластины приспособления для формирования токопроводящего канала жестко соединены с цилиндром, причем длина двух радиальных пластин плюс наружный диаметр цилиндра соответствует внутреннему диаметру печи.

Документы, цитированные в отчете о поиске Патент 2005 года RU2258759C1

СПОСОБ ОБОГАЩЕНИЯ ТИТАНОКРЕМНИСТЫХ КОНЦЕНТРАТОВ 2002
  • Баканов В.К.
  • Федун М.П.
  • Павлов А.В.
  • Григорян В.А.
  • Пастихин В.В.
RU2220222C1
Способ производства титансодержащих лигатур 1987
  • Мелеков Виктор Алексеевич
  • Вихлевщук Валерий Антонович
  • Поляков Владимир Федорович
  • Андреев Борис Константинович
  • Жовтяк Александр Владимирович
  • Кислицин Виктор Андреевич
  • Ерко Владимир Ильич
  • Земляков Владимир Васильевич
  • Солошенко Владимир Павлович
  • Лотц Юрий Фридрихович
  • Лихачев Анатолий Гаврилович
  • Шубин Александр Егорович
SU1479542A1
Кожухотрубный теплообменник 1986
  • Максимов Николай Васильевич
  • Михеев Владимир Федорович
  • Финкельштейн Беньямин Абрамович
  • Филатов Владимир Иванович
  • Эльтерман Леонид Евгеньевич
SU1295196A1
Технология металлов и конструктивные материалы
Под редакцией проф
Б.А.Кузьмина
М., Машиностроение, 1989, с.70, рис.4.7.

RU 2 258 759 C1

Авторы

Баканов В.К.

Федун М.П.

Павлов А.В.

Григорян В.А.

Пастихин В.В.

Даты

2005-08-20Публикация

2004-05-19Подача