Изобретение относится к области полупроводниковых излучающих приборов, конкретнее к светодиодам на основе широкозонных нитридных соединений типа AIIIBV.
Известен полупроводниковый светоизлучающий элемент, содержащий подложку, буферный слой, n-контактный слой, выполненный из GaN и легированный Si, р-контактный слой, выполненный из GaN и легированный Mg, F.Calle et al., MRS J.Nitride Semicond. Res. 3 (1998) 24.
Это техническое решение обеспечивает максимальную простоту конструкции прибора, однако не позволяет получить высокую внутреннюю эффективность излучения и длину волны излучения менее 365 нм.
Известен также полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала Alx1Iny1Ga1-x1-y1N, легированного Si, активный слой, выполненный из нитридного материала Alx2Iny2Ga1-x2-y2N, легированный одновременно донорами и акцепторами, и р-контактный слой, выполненный из нитридного материала Alx3Iny3Ga1-x3-y3N, легированного Mg, где вышеупомянутые слои образуют либо одностороннюю, либо двухстороннюю гетероструктуру, US 6005258.
В данной конструкции для повышения внутренней квантовой эффективности светоизлучающего элемента используется либо солегирование донорами и акцепторами активного слоя гетероструктуры, либо замена односторонней структуры двухсторонней.
Данное техническое решение выбрано в качестве прототипа настоящего изобретения.
Однако этот полупроводниковый светоизлучающий элемент пригоден, в первую очередь, для генерации излучения с длиной волны 350 нм и более. В более коротковолновом диапазоне внутренняя эффективность излучения устройства-прототипа резко деградирует.
Это объясняется тем, что для работы элемента в ультрафиолетовом спектральном диапазоне (с длиной волны излучения 300 нм и менее) требуется использование нитридных соединений с высоким содержанием AlN. В этом случае наиболее существенными факторами, определяющими эффективность излучения, являются ограничение носителей в активном слое и подавление потенциальных барьеров, связанных с поляризационными зарядами, возникающими на интерфейсах со скачкообразным изменением состава. В устройстве-прототипе ограничение носителей в пределах активного слоя недостаточно. В результате инжектируемые дырки могут свободно проникать в n-контактный слой, а электроны - в р-контактный слой, где они рекомбинируют преимущественно безызлучательно, приводя к резкому снижению внутренней эффективности.
В основу данного изобретения положено решение задачи расширения диапазона ультрафиолетового излучения до 240-300 нм, повышения внутренней эффективности излучения при одновременном упрощении конструкции светоизлучающего элемента.
Согласно изобретению эта задача решается за счет того, что в полупроводниковом элементе, излучающем свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала AlX1InX2Ga1-X1-X2N, легированного Si, активный слой, выполненный из нитридного материала AlY1InY2Ga1-Y1-Y2N, и р-контактный слой, выполненный из нитридного материала AlZ1InZ2Ga1-Z1-Z2N, легированного Mg, активный слой разделен на две области, при этом прилегающая к контактному слою область легирована Si и имеет проводимость n-типа, а другая область активного слоя легирована Mg и имеет проводимость р-типа, мольная доля Al (Y1) в области активного слоя с проводимостью n-типа непрерывно и монотонно уменьшается от границы с n-контактным слоем до границы с областью активного слоя, имеющей проводимость р-типа, и находится в пределах 0,1≤Y1≤1, причем разница значений Y1 на границах области активного слоя с проводимостью n-типа составляет не менее 0,04, а ширина запрещенной зоны в области активного слоя с проводимостью р-типа на ее границе с областью с проводимостью n-типа не менее чем на 0,1 эВ превышает максимальную ширину запрещенной зоны области с проводимостью n-типа.
Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».
Реализация отличительных признаков изобретения обеспечивает повышение эффективности излучения за счет расширения активного слоя по сравнению с традиционными двухсторонними структурами на основе квантовых ям, где критичным фактором является качество интерфейсов и профиль легирования вблизи них. Кроме того, широкая активная область снижает тепловую нагрузку на активный слой, что дополнительно благоприятствует повышению эффективности прибора.
Использование содержания InN в слоях гетероструктуры с указанными мольными долями In, с одной стороны, способствует уменьшению концентрации собственных точечных дефектов в материале, что благоприятно для повышения внутренней эффективности излучения, а с другой стороны, не приводит к распаду на фазы твердых растворов AlxInyGa1-x-yN, сопровождающемуся генерацией протяженных дефектов, резко снижающему квантовый выход излучения.
Для подавления проникновения дырок в n-контактный слой в предлагаемой конструкции применяется плавное изменение ширины запрещенной зоны в n-области активного слоя за счет вариации его состава. Это создает для дырок встроенное электрическое поле, оттягивающее их от n-контактного слоя по направлению к границе р-n перехода. Величина тянущего поля контролируется разницей значений у, на границах области активного слоя с проводимостью n-типа в пределах 0,04.
Для предотвращения проникновения электронов в р-контактный слой формируется скачок состава (и, следовательно, ширины запрещенной зоны) на границе областей активного слоя с проводимостью n- и р-типа (n- и р-областей). Чтобы потенциальный барьер для электронов, созданный этим скачком, был эффективен и при больших уровнях инжекции, необходимо, чтобы ширина запрещенной зоны в р-области активного слоя на ее границе с n-областью была на 0.1 эВ больше, чем максимальная ширина запрещенной зоны в n-области активного слоя.
Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемые вследствие их реализации технический результат. Это, по мнению заявителя, свидетельствует о соответствии данного технического решения критерию «изобретательский уровень».
Полупроводниковый элемент в конкретном исполнении во всех примерах имеет структуру, которая включает последовательно:
- подложку 1, выполненную из сапфира, толщиной 500 мкм;
- буферный слой 2 из AlN толщиной 20 нм;
- n-контактный слой 3, выполненный из ALX1INX2GA1-X1-X2N, в данном примере X1=0,52; X1 может варьироваться от 0,1 до 1,0; Х2 может варьироваться от 0 до 0,05. Слой 3 легирован кремнием с концентрацией 5·1018 см-3, толщиной 1,5 мкм;
- активный слой, выполненный из AlY1InY2Ga1-Y1-Y2N, где Y1=0,52, может лежать в пределах от 0,1 до 1, Y2=0 и может быть в пределах от 0 до 0,05; активный слой включает область 4, легированную Si с концентрацией 5·1018 см-3 с проводимостью n-типа, и область 5, легированную Mg с концентрацией 5·1019 см-3, имеющую проводимость р-типа;
- р-контактный слой 6, выполненный из AlZ1InZ2Ga1-Z1-Z2N, в котором величина Z1=0,52; Z1 может варьироваться в пределах от 0,1 до 1,0; Z2 может быть в пределах от 0 до 0,05. Слой G легирован магнием с концентрацией 5·1019 см-3, толщиной 100 нм.
Полупроводниковый элемент представляет собой одностороннюю светодиодную гетероструктуру с переменным составом активного слоя, которая позволяет получить внутреннюю эффективность на уровне 15-35% при плотностях тока, изменяющихся в диапазоне от 1 А/см2 до 100 А/см2 и плотности проникающих дислокаций ˜109 см-2. Следует при этом отметить, что уменьшение плотности дислокации в светодиоде приводит к резкому повышению его внутренней эффективности. При плотности дислокации ˜107 см-2 возможно получить внутренний квантовый выход, превышающий 90%.
Для испытаний гетероструктуры выращивались на сапфировой подложке методом МОС-гидридной эпитаксии при субатмосферном давлении и температурах от 1000°С до 1100°С, n-контактные слои и n-области активных слоев легировались Si до концентрации 5·1018 см-3, что было установлено с помощью ВИМС (вторичная ионная масс-спектрометрия). р-области активных слоев и р-контактные слои легировались Mg до концентрации 5·1019 см-3.
После процесса роста структура подвергалась сухому (ионному) травлению с целью формирования мезы до глубины, соответствующей уровню n-контактного слоя. Далее на вытравленную и оставшуюся части структуры наносились соответственно n- и р-контакты, представляющие собой многослойные металлические композиции, соответственно Ti/Al/Pt/Au и Ni/Au. Контакты вжигались в атмосфере азота при температуре 850°С в течение 30 секунд.
Далее из структуры вырезались отдельные светодиоды, которые монтировались на теплоотводе р-контактом вниз, и к ним припаивались золотые электроды для подвода электрического тока.
Для исследования люминесцентных характеристик светодиодов использовался спектрометр КСВУ-12 со специально подобранной дифракционной решеткой, позволяющей осуществлять измерения в ультрафиолетовом спектральном диапазоне. В качестве детектора использовался фотоумножитель ФЭУ-100. Сигнал с фотоумножителя через цифровой вольтметр Щ1413 передавался на компьютер для окончательной обработки данных измерений.
Точность измерений интенсивности излучения была не хуже, чем 0,02%.
Для измерения внешней эффективности светодиода использовался калиброванный фотодетектор на основе аморфного Si:H (кремния, легированного водородом). Измерения проводились при фиксированной геометрии эксперимента, что позволяло количественно сравнивать излучение различных образцов.
Электролюминесценция светодиодов измерялась при выводе излучения через сапфировую подложку.
Полученные в результате испытаний характеристики полупроводниковых светоизлучающих элементов приведены в таблице 1.
В примерах 3, 4, 5, 6 внутренняя квантовая эффективность полупроводникового прибора превышает 15% и достигает на отдельных структурах уровня более 30% при плотности тока 100 А/см2. Дальнейшее повышение плотности тока приводит к росту эффективности до ˜50% при плотности тока ˜1 кА/см2, что важно для создания мощных светодиодов и лазеров ультрафиолетового диапазона.
Приведенные примеры подтверждают высокую эффективность излучения в коротковолновой части ультрафиолетового спектра.
Для реализации светоизлучающих элементов использовано стандартное промышленное оборудование, что обусловливает соответствие изобретения критерию «промышленная применимость».
название | год | авторы | номер документа |
---|---|---|---|
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ, ИЗЛУЧАЮЩИЙ СВЕТ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ | 2004 |
|
RU2262155C1 |
Светоизлучающий диод на кремниевой подложке | 2021 |
|
RU2755933C1 |
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ, ИЗЛУЧАЮЩИЙ СВЕТ В СИНЕЙ ОБЛАСТИ ВИДИМОГО СПЕКТРА | 2005 |
|
RU2277736C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО ПОЛУПРОВОДНИКОВОГО ИЗЛУЧАЮЩЕГО УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ ЭЛЕМЕНТА И НИТРИДНЫЙ ПОЛУПРОВОДНИКОВЫЙ ИЗЛУЧАЮЩИЙ УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ ЭЛЕМЕНТ | 2017 |
|
RU2719339C1 |
Светоизлучающий диод | 2023 |
|
RU2819047C1 |
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ЭЛЕМЕНТ | 2010 |
|
RU2456711C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА | 2018 |
|
RU2690036C1 |
III-НИТРИДНОЕ СВЕТОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО СО СВЕТОИЗЛУЧАЮЩЕЙ ОБЛАСТЬЮ С ДВОЙНОЙ ГЕТЕРОСТРУКТУРОЙ | 2006 |
|
RU2412505C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА | 2019 |
|
RU2721166C1 |
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ПРИБОР | 2011 |
|
RU2461916C1 |
Изобретение относится к области полупроводниковых излучающих приборов, конкретнее к светодиодам на основе широкозонных нитридных соединений типа АIIIBV. В полупроводниковом элементе, излучающем свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала AlX1InX2Ga1-X1-X2N, легированного Si, активный слой, выполненный из нитридного материала AlY1InY2Ga1-Y1-Y2-N, и р-контактный слой, выполненный из нитридного материала AlZ1InZ2Ga1-Z1-Z2N, легированного Mg, активный слой разделен на две области, при этом прилегающая к контактному слою область легирована Si и имеет проводимость n-типа, а другая область активного слоя легирована Mg и имеет проводимость р-типа, мольная доля Al (Y1) в области активного слоя с проводимостью n-типа непрерывно и монотонно уменьшается от границы с n-контактным слоем до границы с областью активного слоя, имеющей проводимость р-типа и находится в пределах 0,1≤Y1≤1, причем разница значений Y1 на границах области активного слоя с проводимостью n-типа составляет не менее 0,04, а ширина запрещенной зоны в области активного слоя с проводимостью р-типа на ее границе с областью с проводимостью n-типа не менее чем на 0,1 эВ превышает максимальную ширину запрещенной зоны области с проводимостью n-типа. Технический результат изобретения: расширение диапазона ультрафиолетового излучения до 240-300 нм, повышение внутренней эффективности излучения при одновременном упрощении конструкции светоизлучающего элемента. 1 табл., 1 ил.
Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала AlX1InX2Ga1-X1-X2N, легированного Si, активный слой, выполненный из нитридного материала AlY1InY2Ga1-Y1-Y2N, и р-контактный слой, выполненный из нитридного материала AlZ1InZ2Ga1-Z1-Z2N, легированного Mg, отличающийся тем, что активный слой разделен на две области, при этом прилегающая к контактному слою область легирована Si и имеет проводимость n-типа, а другая область активного слоя легирована Mg и имеет проводимость р-типа, мольная доля Al (Y1) в области активного слоя с проводимостью n-типа непрерывно и монотонно уменьшается от границы с n-контактным слоем до границы с областью активного слоя, имеющей проводимость р-типа и находится в пределах 0,1≤Y1≤1, причем разница значений Y1 на границах области активного слоя с проводимостью n-типа составляет не менее 0,04, а ширина запрещенной зоны в области активного слоя с проводимостью р-типа на ее границе с областью с проводимостью n-типа не менее чем на 0,1 эВ превышает максимальную ширину запрещенной зоны области с проводимостью n-типа.
US 6265726 B1, 24.07.2001 | |||
Устройство для рафинирования жидких металлов | 1977 |
|
SU622858A1 |
US 5729029 А, 17.03.1998 | |||
US 6133589 А, 17.10.2000 | |||
РЕДУКТОР | 2007 |
|
RU2344461C1 |
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ ИСТОЧНИК СВЕТА С ПЕРЕСТРАИВАЕМЫМ ЦВЕТОМ СВЕЧЕНИЯ | 2001 |
|
RU2202843C2 |
ЭПИТАКСИАЛЬНАЯ ПОЛУПРОВОДНИКОВАЯ СТРУКТУРА НИТРИДОВ ЭЛЕМЕНТОВ ГРУППЫ А | 1999 |
|
RU2159483C1 |
Авторы
Даты
2005-10-10—Публикация
2004-09-14—Подача