ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ, ИЗЛУЧАЮЩИЙ СВЕТ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ Российский патент 2005 года по МПК H01L33/00 

Описание патента на изобретение RU2262156C1

Изобретение относится к области полупроводниковых излучающих приборов, конкретнее к светодиодам на основе широкозонных нитридных соединений типа AIIIBV.

Известен полупроводниковый светоизлучающий элемент, содержащий подложку, буферный слой, n-контактный слой, выполненный из GaN и легированный Si, р-контактный слой, выполненный из GaN и легированный Mg, F.Calle et al., MRS J.Nitride Semicond. Res. 3 (1998) 24.

Это техническое решение обеспечивает максимальную простоту конструкции прибора, однако не позволяет получить высокую внутреннюю эффективность излучения и длину волны излучения менее 365 нм.

Известен также полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала Alx1Iny1Ga1-x1-y1N, легированного Si, активный слой, выполненный из нитридного материала Alx2Iny2Ga1-x2-y2N, легированный одновременно донорами и акцепторами, и р-контактный слой, выполненный из нитридного материала Alx3Iny3Ga1-x3-y3N, легированного Mg, где вышеупомянутые слои образуют либо одностороннюю, либо двухстороннюю гетероструктуру, US 6005258.

В данной конструкции для повышения внутренней квантовой эффективности светоизлучающего элемента используется либо солегирование донорами и акцепторами активного слоя гетероструктуры, либо замена односторонней структуры двухсторонней.

Данное техническое решение выбрано в качестве прототипа настоящего изобретения.

Однако этот полупроводниковый светоизлучающий элемент пригоден, в первую очередь, для генерации излучения с длиной волны 350 нм и более. В более коротковолновом диапазоне внутренняя эффективность излучения устройства-прототипа резко деградирует.

Это объясняется тем, что для работы элемента в ультрафиолетовом спектральном диапазоне (с длиной волны излучения 300 нм и менее) требуется использование нитридных соединений с высоким содержанием AlN. В этом случае наиболее существенными факторами, определяющими эффективность излучения, являются ограничение носителей в активном слое и подавление потенциальных барьеров, связанных с поляризационными зарядами, возникающими на интерфейсах со скачкообразным изменением состава. В устройстве-прототипе ограничение носителей в пределах активного слоя недостаточно. В результате инжектируемые дырки могут свободно проникать в n-контактный слой, а электроны - в р-контактный слой, где они рекомбинируют преимущественно безызлучательно, приводя к резкому снижению внутренней эффективности.

В основу данного изобретения положено решение задачи расширения диапазона ультрафиолетового излучения до 240-300 нм, повышения внутренней эффективности излучения при одновременном упрощении конструкции светоизлучающего элемента.

Согласно изобретению эта задача решается за счет того, что в полупроводниковом элементе, излучающем свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала AlX1InX2Ga1-X1-X2N, легированного Si, активный слой, выполненный из нитридного материала AlY1InY2Ga1-Y1-Y2N, и р-контактный слой, выполненный из нитридного материала AlZ1InZ2Ga1-Z1-Z2N, легированного Mg, активный слой разделен на две области, при этом прилегающая к контактному слою область легирована Si и имеет проводимость n-типа, а другая область активного слоя легирована Mg и имеет проводимость р-типа, мольная доля Al (Y1) в области активного слоя с проводимостью n-типа непрерывно и монотонно уменьшается от границы с n-контактным слоем до границы с областью активного слоя, имеющей проводимость р-типа, и находится в пределах 0,1≤Y1≤1, причем разница значений Y1 на границах области активного слоя с проводимостью n-типа составляет не менее 0,04, а ширина запрещенной зоны в области активного слоя с проводимостью р-типа на ее границе с областью с проводимостью n-типа не менее чем на 0,1 эВ превышает максимальную ширину запрещенной зоны области с проводимостью n-типа.

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».

Реализация отличительных признаков изобретения обеспечивает повышение эффективности излучения за счет расширения активного слоя по сравнению с традиционными двухсторонними структурами на основе квантовых ям, где критичным фактором является качество интерфейсов и профиль легирования вблизи них. Кроме того, широкая активная область снижает тепловую нагрузку на активный слой, что дополнительно благоприятствует повышению эффективности прибора.

Использование содержания InN в слоях гетероструктуры с указанными мольными долями In, с одной стороны, способствует уменьшению концентрации собственных точечных дефектов в материале, что благоприятно для повышения внутренней эффективности излучения, а с другой стороны, не приводит к распаду на фазы твердых растворов AlxInyGa1-x-yN, сопровождающемуся генерацией протяженных дефектов, резко снижающему квантовый выход излучения.

Для подавления проникновения дырок в n-контактный слой в предлагаемой конструкции применяется плавное изменение ширины запрещенной зоны в n-области активного слоя за счет вариации его состава. Это создает для дырок встроенное электрическое поле, оттягивающее их от n-контактного слоя по направлению к границе р-n перехода. Величина тянущего поля контролируется разницей значений у, на границах области активного слоя с проводимостью n-типа в пределах 0,04.

Для предотвращения проникновения электронов в р-контактный слой формируется скачок состава (и, следовательно, ширины запрещенной зоны) на границе областей активного слоя с проводимостью n- и р-типа (n- и р-областей). Чтобы потенциальный барьер для электронов, созданный этим скачком, был эффективен и при больших уровнях инжекции, необходимо, чтобы ширина запрещенной зоны в р-области активного слоя на ее границе с n-областью была на 0.1 эВ больше, чем максимальная ширина запрещенной зоны в n-области активного слоя.

Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемые вследствие их реализации технический результат. Это, по мнению заявителя, свидетельствует о соответствии данного технического решения критерию «изобретательский уровень».

Полупроводниковый элемент в конкретном исполнении во всех примерах имеет структуру, которая включает последовательно:

- подложку 1, выполненную из сапфира, толщиной 500 мкм;

- буферный слой 2 из AlN толщиной 20 нм;

- n-контактный слой 3, выполненный из ALX1INX2GA1-X1-X2N, в данном примере X1=0,52; X1 может варьироваться от 0,1 до 1,0; Х2 может варьироваться от 0 до 0,05. Слой 3 легирован кремнием с концентрацией 5·1018 см-3, толщиной 1,5 мкм;

- активный слой, выполненный из AlY1InY2Ga1-Y1-Y2N, где Y1=0,52, может лежать в пределах от 0,1 до 1, Y2=0 и может быть в пределах от 0 до 0,05; активный слой включает область 4, легированную Si с концентрацией 5·1018 см-3 с проводимостью n-типа, и область 5, легированную Mg с концентрацией 5·1019 см-3, имеющую проводимость р-типа;

- р-контактный слой 6, выполненный из AlZ1InZ2Ga1-Z1-Z2N, в котором величина Z1=0,52; Z1 может варьироваться в пределах от 0,1 до 1,0; Z2 может быть в пределах от 0 до 0,05. Слой G легирован магнием с концентрацией 5·1019 см-3, толщиной 100 нм.

Полупроводниковый элемент представляет собой одностороннюю светодиодную гетероструктуру с переменным составом активного слоя, которая позволяет получить внутреннюю эффективность на уровне 15-35% при плотностях тока, изменяющихся в диапазоне от 1 А/см2 до 100 А/см2 и плотности проникающих дислокаций ˜109 см-2. Следует при этом отметить, что уменьшение плотности дислокации в светодиоде приводит к резкому повышению его внутренней эффективности. При плотности дислокации ˜107 см-2 возможно получить внутренний квантовый выход, превышающий 90%.

Для испытаний гетероструктуры выращивались на сапфировой подложке методом МОС-гидридной эпитаксии при субатмосферном давлении и температурах от 1000°С до 1100°С, n-контактные слои и n-области активных слоев легировались Si до концентрации 5·1018 см-3, что было установлено с помощью ВИМС (вторичная ионная масс-спектрометрия). р-области активных слоев и р-контактные слои легировались Mg до концентрации 5·1019 см-3.

После процесса роста структура подвергалась сухому (ионному) травлению с целью формирования мезы до глубины, соответствующей уровню n-контактного слоя. Далее на вытравленную и оставшуюся части структуры наносились соответственно n- и р-контакты, представляющие собой многослойные металлические композиции, соответственно Ti/Al/Pt/Au и Ni/Au. Контакты вжигались в атмосфере азота при температуре 850°С в течение 30 секунд.

Далее из структуры вырезались отдельные светодиоды, которые монтировались на теплоотводе р-контактом вниз, и к ним припаивались золотые электроды для подвода электрического тока.

Для исследования люминесцентных характеристик светодиодов использовался спектрометр КСВУ-12 со специально подобранной дифракционной решеткой, позволяющей осуществлять измерения в ультрафиолетовом спектральном диапазоне. В качестве детектора использовался фотоумножитель ФЭУ-100. Сигнал с фотоумножителя через цифровой вольтметр Щ1413 передавался на компьютер для окончательной обработки данных измерений.

Точность измерений интенсивности излучения была не хуже, чем 0,02%.

Для измерения внешней эффективности светодиода использовался калиброванный фотодетектор на основе аморфного Si:H (кремния, легированного водородом). Измерения проводились при фиксированной геометрии эксперимента, что позволяло количественно сравнивать излучение различных образцов.

Электролюминесценция светодиодов измерялась при выводе излучения через сапфировую подложку.

Полученные в результате испытаний характеристики полупроводниковых светоизлучающих элементов приведены в таблице 1.

Таблица 1Номер примераПараметры полупроводникового элементаВнутренняя квантовая эффективность при плотности тока от 1 до 102 А/см2Диапазон длин волн (нм)1Доля Al Y1=0,42 в n-области (50 нм), и Y1=0,62 в р-области (50 нм); доля Al в р-контактном слое Z1=0.620,14-0,11250-2902Доля Al Y1=0,42 в n-области (50 нм), и Y1=0,70 (10 нм) вблизи границы с n-областью и Y1=0,52; доля Al в р-контактном слое Z1=0.520,13-0,14250-2903Доля Al уменьшается от Y1=0,52 до 0,42 на толщине 10 нм в n-области, а затем увеличивается от Y1=0,42 до Y1=0,62 на толщине 10 нм в р-области; доля Al в р-контактном слое Z1=0.620,15-0,23250-2904Доля Al уменьшается от Y1=0,52 до 0,42 на толщине 20 нм в n-области, а затем увеличивается от Y1=0,52 до Y1=0,70 на толщине 10 нм в р-области; доля Al в р-контактном слое Z1=0.520,17-0,32250-2905Доля Al уменьшается от Y1=0,52 до 0,42 на толщине 50 нм в n-области, а затем составляет Y1=0,62 на толщине 20 нм в р-области; доля Al в р-контактном слое Z1=0.620,15-0,34250-2906Доля Al уменьшается от Y1=0,52 до 0,42 на толщине 20 нм в n-области, а затем составляет Y1=0,62 на толщине 20 нм в р-области; доля Al в р-контактном слое Z1=0.620,17-0,22250-2907Доля Al уменьшается от Y1=0,62 до 0,52 на толщине 20 нм в n-области, а затем увеличивается от Y1=0,42 до Y1=0,54 на толщине 50 нм в р-области; доля Al в р-контактном слое Z1=0.540,02-0,12250-290

В примерах 3, 4, 5, 6 внутренняя квантовая эффективность полупроводникового прибора превышает 15% и достигает на отдельных структурах уровня более 30% при плотности тока 100 А/см2. Дальнейшее повышение плотности тока приводит к росту эффективности до ˜50% при плотности тока ˜1 кА/см2, что важно для создания мощных светодиодов и лазеров ультрафиолетового диапазона.

Приведенные примеры подтверждают высокую эффективность излучения в коротковолновой части ультрафиолетового спектра.

Для реализации светоизлучающих элементов использовано стандартное промышленное оборудование, что обусловливает соответствие изобретения критерию «промышленная применимость».

Похожие патенты RU2262156C1

название год авторы номер документа
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ, ИЗЛУЧАЮЩИЙ СВЕТ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ 2004
  • Карпов С.Ю.
  • Мымрин В.Ф.
RU2262155C1
Светоизлучающий диод на кремниевой подложке 2021
  • Гращенко Александр Сергеевич
  • Кукушкин Сергей Арсеньевич
  • Марков Лев Константинович
  • Николаев Андрей Евгеньевич
  • Осипов Андрей Викторович
  • Павлюченко Алексей Сергеевич
  • Святец Генадий Викторович
  • Смирнова Ирина Павловна
  • Цацульников Андрей Федорович
RU2755933C1
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ, ИЗЛУЧАЮЩИЙ СВЕТ В СИНЕЙ ОБЛАСТИ ВИДИМОГО СПЕКТРА 2005
  • Карпов Сергей Юрьевич
  • Мымрин Владимир Федорович
RU2277736C1
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО ПОЛУПРОВОДНИКОВОГО ИЗЛУЧАЮЩЕГО УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ ЭЛЕМЕНТА И НИТРИДНЫЙ ПОЛУПРОВОДНИКОВЫЙ ИЗЛУЧАЮЩИЙ УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ ЭЛЕМЕНТ 2017
  • Хирано, Акира
  • Нагасава, Йосуке
  • Титибу, Сигефуса
  • Кодзима, Казунобу
RU2719339C1
Светоизлучающий диод 2023
  • Кукушкин Сергей Арсеньевич
  • Марков Лев Константинович
  • Осипов Андрей Викторович
  • Павлюченко Алексей Сергеевич
  • Святец Генадий Викторович
  • Смирнова Ирина Павловна
RU2819047C1
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ЭЛЕМЕНТ 2010
  • Макаров Юрий Николаевич
  • Курин Сергей Юрьевич
  • Хейкки Хелава
  • Чемекова Татьяна Юрьевна
RU2456711C1
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА 2018
  • Марков Лев Константинович
  • Павлюченко Алексей Сергеевич
  • Смирнова Ирина Павловна
  • Закгейм Дмитрий Александрович
RU2690036C1
III-НИТРИДНОЕ СВЕТОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО СО СВЕТОИЗЛУЧАЮЩЕЙ ОБЛАСТЬЮ С ДВОЙНОЙ ГЕТЕРОСТРУКТУРОЙ 2006
  • Шэнь Юй-Чэнь
  • Гарднер Натан Ф.
  • Ватанабе Сатоси
  • Креймс Майкл Р.
  • Мюллер Герд О.
RU2412505C2
СПОСОБ ИЗГОТОВЛЕНИЯ НИТРИДНОГО СВЕТОИЗЛУЧАЮЩЕГО ДИОДА 2019
  • Марков Лев Константинович
  • Павлюченко Алексей Сергеевич
  • Смирнова Ирина Павловна
RU2721166C1
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ПРИБОР 2011
  • Усов Сергей Петрович
  • Сахаров Юрий Владимирович
  • Троян Павел Ефимович
RU2461916C1

Реферат патента 2005 года ПОЛУПРОВОДНИКОВЫЙ ЭЛЕМЕНТ, ИЗЛУЧАЮЩИЙ СВЕТ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ

Изобретение относится к области полупроводниковых излучающих приборов, конкретнее к светодиодам на основе широкозонных нитридных соединений типа АIIIBV. В полупроводниковом элементе, излучающем свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала AlX1InX2Ga1-X1-X2N, легированного Si, активный слой, выполненный из нитридного материала AlY1InY2Ga1-Y1-Y2-N, и р-контактный слой, выполненный из нитридного материала AlZ1InZ2Ga1-Z1-Z2N, легированного Mg, активный слой разделен на две области, при этом прилегающая к контактному слою область легирована Si и имеет проводимость n-типа, а другая область активного слоя легирована Mg и имеет проводимость р-типа, мольная доля Al (Y1) в области активного слоя с проводимостью n-типа непрерывно и монотонно уменьшается от границы с n-контактным слоем до границы с областью активного слоя, имеющей проводимость р-типа и находится в пределах 0,1≤Y1≤1, причем разница значений Y1 на границах области активного слоя с проводимостью n-типа составляет не менее 0,04, а ширина запрещенной зоны в области активного слоя с проводимостью р-типа на ее границе с областью с проводимостью n-типа не менее чем на 0,1 эВ превышает максимальную ширину запрещенной зоны области с проводимостью n-типа. Технический результат изобретения: расширение диапазона ультрафиолетового излучения до 240-300 нм, повышение внутренней эффективности излучения при одновременном упрощении конструкции светоизлучающего элемента. 1 табл., 1 ил.

Формула изобретения RU 2 262 156 C1

Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне, структура которого последовательно включает подложку, буферный слой, выполненный из нитридного материала, n-контактный слой, выполненный из нитридного материала AlX1InX2Ga1-X1-X2N, легированного Si, активный слой, выполненный из нитридного материала AlY1InY2Ga1-Y1-Y2N, и р-контактный слой, выполненный из нитридного материала AlZ1InZ2Ga1-Z1-Z2N, легированного Mg, отличающийся тем, что активный слой разделен на две области, при этом прилегающая к контактному слою область легирована Si и имеет проводимость n-типа, а другая область активного слоя легирована Mg и имеет проводимость р-типа, мольная доля Al (Y1) в области активного слоя с проводимостью n-типа непрерывно и монотонно уменьшается от границы с n-контактным слоем до границы с областью активного слоя, имеющей проводимость р-типа и находится в пределах 0,1≤Y1≤1, причем разница значений Y1 на границах области активного слоя с проводимостью n-типа составляет не менее 0,04, а ширина запрещенной зоны в области активного слоя с проводимостью р-типа на ее границе с областью с проводимостью n-типа не менее чем на 0,1 эВ превышает максимальную ширину запрещенной зоны области с проводимостью n-типа.

Документы, цитированные в отчете о поиске Патент 2005 года RU2262156C1

US 6265726 B1, 24.07.2001
Устройство для рафинирования жидких металлов 1977
  • Израэльянц Рубен Давидович
  • Метелкин Юрий Алексеевич
SU622858A1
US 5729029 А, 17.03.1998
US 6133589 А, 17.10.2000
РЕДУКТОР 2007
  • Садыков Ренат Ахатович
  • Правник Юрий Иосифович
  • Давлетбаева Фарида Исламовна
RU2344461C1
ПОЛУПРОВОДНИКОВЫЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ ИСТОЧНИК СВЕТА С ПЕРЕСТРАИВАЕМЫМ ЦВЕТОМ СВЕЧЕНИЯ 2001
  • Ермаков О.Н.
  • Каплунов М.Г.
  • Бутаева А.Н.
  • Ефимов О.Н.
  • Белов М.Ю.
  • Пивоваров А.П.
  • Якущенко И.К.
RU2202843C2
ЭПИТАКСИАЛЬНАЯ ПОЛУПРОВОДНИКОВАЯ СТРУКТУРА НИТРИДОВ ЭЛЕМЕНТОВ ГРУППЫ А 1999
  • Чалый В.П.
  • Тер-Мартиросян А.Л.
  • Соколов И.А.
  • Погорельский Ю.В.
  • Демидов Д.М.
RU2159483C1

RU 2 262 156 C1

Авторы

Карпов С.Ю.

Мымрин В.Ф.

Даты

2005-10-10Публикация

2004-09-14Подача