FIELD: chemical industry; a method of modernization of a completely detectable reactor.
SUBSTANCE: the invention is pertaining to the method of modernization of a completely detectable reactor. The method provides for modernization of an in-situ reactor of a heterogeneous exothermic synthesis having an external body with several located in it one over another and at some space from each other layers of a catalyst, at realization of which on the initial stage in the upper part of the body form at least the first layer of the catalyst filled in with the first catalyst having the activity picked beforehand; also form several layers of the catalyst located in the lower part of the body in parallel to each other. The layers located in the lower part of the body are filled in with the second catalyst, activity of which exceeds the activity of the first catalyst with which at least the first layer is filled in. The method of an exothermic heterogeneous synthesis with high yield is realized by feeding of the gaseous reagents in the reactor of a synthesis, which has a body with several catalyst layers resting on it, which are placed one over another at some space from each other and in which a reaction of interaction between the gaseous reagents runs. A reaction mixture also is fed at least from the first layer of the catalyst located in the upper part of the body into several layers of the catalyst located in parallel to each other in the lower part of the body. Let the reaction mixture run through the catalyst layers located in the lower part of the body and filled in with the catalyst the reaction activity of which exceeds activity of the catalyst, with which at least the first layer of the catalyst is filled in and the products of the reaction of the synthesis are taken out from the reactor catalyst layers located in the lower part of the body. The technical result is an increased conversion yield and productivity of the reactor at low operational costs and a low power consumption.
EFFECT: the invention ensures increased conversion yield and productivity of the reactor at low operational costs and a lower power consumption.
9 cl, 2 dwg
Authors
Dates
2005-10-20—Published
2000-08-30—Filed