FIELD: cryogenic technique, particularly for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification.
SUBSTANCE: method involves compressing neon-helium mixture flow, cooling thereof and separating under 28-29.5 K temperature and pressure exceeding critical neon pressure to form stripping gas and liquid fraction; additionally absorbing neon from stripping gas by adsorbers; purging adsorbers with helium during desorption thereof; mixing purging gas with neon-helium mixture before compressing thereof. Separation device comprises compressor with inlet pipeline, main heat-exchanger with stripping gas inlet and outlet connection pipes, low-temperature heat-exchanger, separator with stripping gas and liquid fraction outlet pipelines, rectifying column with evaporator in column bottom and alternating adsorbers. Gas inlet connection pipe of each adsorber is connected to stripping gas outlet pipeline of separator downstream of low-temperature heat-exchanger and to compressor inlet pipeline through pipelines provided with valves. Gas outlet connection pipe of each adsorber is linked with stripping gas inlet and outlet connection pipes of main heat-exchanger through pipelines provided with valves. Evaporator has capillary-porous coating applied from boiling side thereof.
EFFECT: increased economic efficiency and reduced metal consumption.
2 cl, 1 dwg
Authors
Dates
2005-11-10—Published
2004-09-01—Filed