Настоящее изобретение относится к двум новым соединениям триоксепана или замещенным 1,1,4-триоксациклогептанам.
Давно известно о многообразии областей применения органических пероксидов. Одним из упомянутых известных соединений является 1,2,4-триоксациклогептан формулы (X), смотри, например, Kirk & Othmer's Encyclopedia of Chem. Tech, 3rd Ed, Vol.17, p.57
WO 98/50354 раскрывает использование упомянутого соединения, а также четырех родственных соединений триоксепана, в том числе продукт формулы (Y), вместе с соагентом в процессах поперечного сшивания.
Установлено, что известные к настоящему моменту соединения недостаточно эффективны и/или экономичны при их использовании, например, в процессах регулируемой деструкции полипропилена и/или полимеризации акрилатов с высоким содержанием сухого остатка. Вероятно именно по этим причинам соединения триоксепана не нашли широкого промышленного применения. Скорее, при использовании предпочтение отдают другим типам органических пероксидов, даже если такие пероксиды требуют флегматизации (разбавления) для того, чтобы обеспечить их безопасную переработку, и/или являются дорогостоящими.
Неожиданно, авторы настоящего изобретения нашли два новых 1,2,4-триоксациклогептана с улучшенными свойствами, которые могут быть использованы как альтернативные варианты пероксидов, традиционно применяемых в упомянутых процессах, такие как 2,5-ди-трет-бутилперокси-2,5-диметилгексан и 3,6,9-триэтил-3,6,9-триметил-1,4,7-трипероксононан.
Согласно этому настоящее изобретение относится к указанным двум новым соединениям 1,2,4-триоксациклогептана. В частности, авторы заявляют два новых соединения формул I и II
.
Соединения могут быть синтезированы обычным способом путем осуществления взаимодействия НОС(СН3)HCH2C(СН3)2OOH с метилэтилкетоном и метилизобутилкетоном соответственно. При желании они могут быть флегматизированы подходящими традиционными флегматизаторами.
Как указано выше, авторы нашли, что упомянутые соединения особенно целесообразно применять для деструкции полипропилена и при получении полиакрилатов, предназначенных для использования в композициях для нанесения покрытий с высоким содержанием сухого остатка, что детально рассмотрено ниже в примерах.
Экспериментальная часть
Используют следующие химикаты:
Borealis® HC001A-B1 порошок гомополипропилена (ПП) от фирмы Borealis
Irganox® 1010 от Ciba Specialty Chemicals
Trigonox® 101 (2,5-ди-трет-бутилперокси-2,5-диметилгексан) от Akyo Nobel
Trigonox® 301, 3,6,9-триэтил-3,6,9-триметил-1,4,7-трипероксононан от Akzo Nobel
Solvesso® 100 и Exxate® 700 от Exxon Mobil.
Все остальные химикаты были поставлены фирмой Acros Chemicals, аналитической чистоты, и использованы без дополнительной очистки.
Примеры 1-5 и сравнительные примеры А-Н
В данных примерах пероксиды (если они использованы) растворяют в дихлорметане (раствор концентрацией приблизительно 5 мас.%) и смешивают с ПП в таком количестве, чтобы обеспечить введение 0,005% или 0,01% по массе активного кислорода (в расчете на массу полипропилена, смотри представленную ниже таблицу). Кроме того, добавляют 0,1% по массе, в расчете на массу ПП, стабилизатора Irganox® 1010. Смесь помещают в сушильный шкаф на ночь при комнатной температуре для удаления дихлорметана.
Образующуюся смесь подают в экструдер Haake Rheocord® system 40 со шнеками интенсивного смешения Rheomex® TW100 с использованием одночервячного насоса Plasticolor 2000 с кожухом типа 15/22. Чтобы поддерживать условия низкого содержания кислорода, азот подают в воронку (2,5 л/минута) и вокруг мундштука (9 л/минута) экструдера Rheocord.
В процессе экструзии скорость вращения шнеков устанавливают на 50 об/мин, а температурный режим соответствует 190/250/250/250°С (условие 1) или 160/225/225/225°С (условие 2).
Образующийся экструдат охлаждают в водяной бане и гранулируют, используя гранулятор Automatik®ASG5. Перед анализом гранулы сушат в течение ночи при 60°С.
Показатель MFI (индекс текучести расплава) полимера анализируют обычным способом методом ASTM D 1238 (230°С/2,16 кг).
Получены следующие результаты:
(г/10 мин)
Из таблицы видно, что соединения формулы I и II очень эффективны с точки зрения регулируемой деструкции ПП, особенно при получении ПП с высоким значением MFI. Неэффективность продукта Х частично может быть обусловлена его высокой летучестью.
Примеры 6-8 и сравнительные примеры I и J
В указанных примерах акрилаты полимеризуют в растворителе, используя снабженный рубашкой стеклянный реактор диаметром 600 мм и высотой 80 мм, оснащенный турбинной мешалкой, обратным холодильником и патрубком для введения.
Растворитель (40 г) подают в реактор. Температуру устанавливают таким образом, чтобы пероксид, использованный при осуществлении эксперимента, имел период полураспада 15 минут при указанной температуре. Для температур полимеризации до и включая 126°С в качестве растворителя используют бутилацетат. Для полимеризации от 126 и выше, включая 165°С, используют Solvesso® 100, а для реакций полимеризации при температуре от 165-200°С используют Exxate® 700.
Азот используют для получения бескислородных условий полимеризации.
Мономеры (40 г бутилацетата, 28 г гидроксиэтилметакрилата, 20 г стирола, 10 г метилметакрилата и 2 г метакриловой кислоты) и 30 мэкв (30 ммолей для соединения с одной OO связью на молекулу, 15 ммолей для соединения с двумя OO связями на молекулу и т.д.) инициатора отмеряют в реактор, используя для этого насос Watson Marlow в течение 4-часового периода. После этого полимеризацию продолжают еще в течение часа при той же температуре.
Образующийся полимер анализируют обычным путем. Молекулярные массы определяют на HP-SEC, используя полистирольные стандарты. Содержание сухого остатка (сухой остаток) образованной смолы определяют методом гравиметрического анализа, взвешивая примерно 1 г смолы с необходимой точностью, растворяя этот образец примерно в 10 г толуола с последующим высушиванием его в термостате с принудительной циркуляцией воздуха в течение 4 часов при 125°С. После охлаждения образца масса оставшегося вещества, разделенная на массу исходного образца, представляет содержание сухого остатка. Вязкость измеряют на вискозиметре Брукфильда при 25°С.
Продукт сравнения "циклический-MIAKP" получают на месте применения, используя ту же методику, что дана для композиции V в WO 96/003397, но используя вместо изобутилкетона изоамилкетон. Продукт разбавляют до содержания 67,3% по массе пероксида. В качестве другого продукта сравнения используют Trigonox® 301 (пероксид циклического-МЭК, 41%-ный раствор в минеральном спирте без запаха) от фирмы Akzo Nobel. Указанные соединения рассматривают в качестве представителей современных инициаторов полимеризации акрилатов с высоким содержанием сухого остатка.
Триоксепаны настоящего изобретения находились в технически чистой форме и содержали более 95% по массе пероксида. Результаты представлены ниже.
Пример 9.
Получение и характеристики соединения формулы I:
Метилэтилкетон (3,6 г) и гидропероксид гексиленгликоля (13,5 г, 51,3% вес./вес. в толуоле) помещают в 50 мл реактор, снабженный мешалкой, термометром и дозирующей воронкой. Реакционную смесь охлаждают до 15°С и после этого добавляют по каплям при перемешивании в течение 5 минут 80% H2SO4 (2,7 г), причем температуру поддерживают ниже 20°С. Реакционную смесь перемешивают в течение еще 5 минут при 15°С и дают температуре подняться до 22°С за 50 минут без охлаждения. Затем в реакционную смесь добавляют 5 мл воды и органический слой отделяют. Полученный органический слой затем промывают 5 мл воды и 5 мл 6% NaHCO3.
Органический слой упаривают на роторном испарителе при 6 мбар и 28°С с получением 6,6 г бесцветного триоксепана.
Анализ при помощи ГХ: 96,1% а/а (2 пика).
Фиг.1 показывает 400 MHz 1H-ЯМР спектр 3-этил-3,5,7,7-тетраметил-1,2,4-триоксепана, соединения формулы I, в CDCL3 с ТМС. На фиг.2 показан его 100 MHz 13С-ЯМР спектр. На фиг.3а сигналы фиг.2 соотносятся к различным атомам углерода в указанном соединении. На фиг.3б показан 13C-DEPT спектр соединения формулы I при 135°С, причем сигналы СН и СН3 указаны как положительные сигналы и СН2 сигналы - как отрицательные. Кроме того, прилагается спектр FTIR (инфракрасный Фурье спектр) этого соединения с характеристическим поглощением в области отпечатков пальцев (фиг.4).
Получение и характеристики соединения Формулы II:
Метилэтилкетон (20,0 г) и гидропероксид гексиленгликоля (46,0 г, 58,2% вес./вес. в толуоле) помещают в 120 мл химический стакан, снабженный мешалкой, термометром и дозирующей воронкой. Реакционную смесь охлаждают до 5°С и после этого добавляют по каплям при перемешивании в течение 5 минут 80% H2SO4 (7,9 г), причем температуру поддерживают ниже 15°С. Реакционную смесь перемешивают в течение еще 10 минут при 15°С и после этого дают температуре подняться до 18°С без охлаждения с последующим перемешиванием в течение еще 45 минут при 18°С без охлаждения. Затем в реакционную смесь добавляют 20 мл воды и органический слой отделяют. Полученный органический слой затем промывают 20 мл воды и 24 раза 20 мл 6% NaHCO3.
Органический слой упаривают на роторном испарителе при 6 мбар и 28°С с получением 33,0 г бесцветного триоксепана.
Анализ при помощи ГХ: 96,1% а/а (2 пика).
Фиг.5 показывает 400 MHz 1H-ЯМР спектр 3-изобутил-3,5,7,7-тетраметил-1,2,4-триоксепана, соединения формулы II, в CDCL3 с ТМС. На фиг.6 показан его 100 MHz 13С-ЯМР спектр. На фиг.7а сигналы фиг.6 соотносятся к различным атомам углерода в указанном соединении. На фиг.7б показан 13C-DEPT спектр соединения формулы II при 135°С, причем сигналы СН и СН3 указаны как положительные сигналы и СН2 сигналы - как отрицательные. Кроме того, прилагается спектр FTIR (инфракрасный Фурье спектр) (фиг.8) этого соединения с характеристическим поглощением в области отпечатков пальцев.
Полученные результаты показывают, что триоксепаны согласно изобретению являются очень эффективными инициаторами для получения низкомолекулярных акрилатных смол с высоким содержанием сухого остатка, которые имеют узкое молекулярно-массовое распределение.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ТРИОКСЕПАНОВОЙ КОМПОЗИЦИИ И ЕЕ ПРИМЕНЕНИЕ ПРИ СШИВАНИИ ПОЛИМЕРОВ | 2005 |
|
RU2398771C2 |
СПОСОБ МОДИФИЦИРОВАНИЯ БИОРАЗЛАГАЕМЫХ ПОЛИМЕРОВ | 2007 |
|
RU2418818C2 |
СОСТАВ ЦИКЛИЧЕСКОГО ПЕРОКСИДА КЕТОНА | 2015 |
|
RU2679146C2 |
ПЕРОКСИДНАЯ МАТОЧНАЯ СМЕСЬ НА ОСНОВЕ БИОСМОЛЫ | 2013 |
|
RU2654025C2 |
СПОСОБ МОДИФИКАЦИИ (СО) ПОЛИМЕРОВ ПЕРОКСИДАМИ ЦИКЛИЧЕСКИХ КЕТОНОВ | 1995 |
|
RU2142473C1 |
МАСТЕРБАТЧ, СОДЕРЖАЩИЙ ЦИКЛИЧЕСКИЙ ПЕРОКСИД КЕТОНА | 2013 |
|
RU2655322C2 |
СПОСОБ МОДИФИКАЦИИ ПОЛИМЕРОВ | 2014 |
|
RU2662006C2 |
СОДЕРЖАЩИЕ ПРОСТОЙ ЭФИР, КАРБИНОЛ-ТЕРМИНИРОВАННЫЕ ПОЛИМЕРЫ | 2011 |
|
RU2592527C2 |
ПОЛИМЕРЫ, МОДИФИЦИРОВАННЫЕ СИЛАНАМИ | 2009 |
|
RU2478655C2 |
ПОЛИПРОПИЛЕН С УЛУЧШЕННЫМИ СВОЙСТВАМИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1994 |
|
RU2141487C1 |
Изобретения относится к двум новым соединениям триоксепана формулы I и формулы II:
которые используются для деструкции полипропилена. Изобретение также относится к композиции для деструкции полипропилена при получении полиакрилатов, содержащих соединения I и II. Технический результат - эффективные инициаторы для получения низкомолекулярных акрилатных смол. 3 н.п. ф-лы, 2 табл., 8 ил.
Приоритет по пунктам:
RU 97102726 А, 10.03.1999 | |||
СПОСОБ ПОЛУЧЕНИЯ ПОЛИПРОПИЛЕНА | 1987 |
|
SU1531439A1 |
ПЕРЕСТРАИВАЕМЫЕ ФИЛЬТРЫ ДЛЯ ЧАСТОТНОЙ РАЗВЯЗКИ ПРИЕМНОГО И ПЕРЕДАЮЩЕГО УСТРОЙСТВ | 0 |
|
SU355733A1 |
Авторы
Даты
2006-01-20—Публикация
2001-08-08—Подача