Изобретение относится к области аналитического приборостроения, в частности к газовому анализу. Изобретение наиболее эффективно может быть использовано для определения основного компонента инертных и других газов.
Известны способы определения основного компонента газовых смесей, основанные на спектральных методах анализа. Однако эти способы сложны для их реализации в аналитических приборах, зачастую требуют применения устройства для создания достаточно глубокого вакуума, что делает их малопригодными для применения.
Наиболее близким к заявленному способу является способ, основанный на применении измерительной диффузионной кислородионной твердоэлектролитной ячейки (патент РФ «Газоанализатор кислорода» №1778663). Сущность этого способа заключается в том, что анализируемый газ, основным компонентом которого является кислород, подают на вход диффузионного сопротивления (например, капилляра), герметично соединенного с твердоэлектролитной камерой, имеющей снаружи и внутри электроды. К электродам приложено напряжение постоянного тока 0,5-1,0 В, под действием которого кислород непрерывно извлекается из внутреннего пространства твердоэлектролитной камеры, соединенной капилляром с анализируемым газом. По току, протекающему через твердый электролит при достижении стационарного состояния, судят о концентрации кислорода в анализируемом газе. Этот способ легко реализуется в приборном варианте. Недостатком способа является то, что он пригоден только для измерения концентрации кислорода.
Техническим результатом заявляемого способа является расширение области применения, а конкретно возможность определения различных основных компонентов газа. Технический результат достигается тем, что анализируемый газ перед подачей в диффузионную твердоэлектролитную ячейку пропускают через дополнительную потенциометрическую твердоэлектролитную ячейку, измеряют ЭДС дополнительной ячейки, и если сравнительной средой, омывающей наружный электрод дополнительной твердоэлектролитной ячейки является атмосферный воздух, то при ЭДС менее минус 30 мВ, основным компонентом газа является кислород, если ЭДС более 800 мВ, то основным компонентом является горючий газ (Н2, СН4 и др.), если ЭДС ограничена в указанных выше пределах, то через дополнительную твердоэлектролитную ячейку пропускают определенный ток, переносимый ионами кислорода, благодаря чему создают в анализируемом газе определенную известную концентрацию кислорода, измеряют ток диффузионной твердоэлектролитной ячейки, и по зависимости тока диффузионной твердоэлектролитной ячейки от концентрации кислорода для различных контрольных газов определяют основной компонент газа.
Сопоставительный анализ заявляемого способа и известного способа показывает, что отличительными существенными признаками, позволяющими расширить область применения, то есть достичь требуемого технического результата, является следующее: анализируемый газ перед подачей в диффузионную твердоэлектролитную ячейку пропускают через дополнительную потенциометрическую твердоэлектролитную ячейку, измеряют ЭДС дополнительной ячейки, и если сравнительной средой, омывающей наружный электрод дополнительной твердоэлектролитной ячейки, является атмосферный воздух, то при ЭДС менее минус 30 мВ, основным компонентом газа является кислород, если ЭДС более 800 мВ, то основным компонентом является горючий газ (Н2, СН4 и др.), если ЭДС ограничена в указанных выше пределах, то через дополнительную твердоэлектролитную ячейку пропускают определенный ток, переносимый ионами кислорода, благодаря чему создают в анализируемом газе определенную известную концентрацию кислорода, измеряют ток диффузионной твердоэлектролитной ячейки, и по зависимости тока диффузионной твердоэлектролитной ячейки от концентрации кислорода для различных контрольных газов определяют основной компонент газа.
На фиг.1 схематично представлено устройство, реализующее предлагаемый способ.
Анализируемый газ с определенной скоростью поступает в дополнительную потенциометрическую твердоэлектролитную ячейку 1, после чего анализируемый газ омывает вход в капилляр 3 диффузионной твердоэлектролитной ячейки 2. Твердоэлектролитные ячейки работают при температурах 650-900°С. Вначале измеряют ЭДС дополнительной потенциометрической ячейки с помощью высокоомного измерителя 9 при выключателе 10 в положении "ВЫКЛЮЧЕНО". Если сравнительной средой, омывающей наружный электрод дополнительной потенциометрической твердоэлектролитной ячейки, является атмосферный воздух, то при ЭДС менее минус 30 мВ, основным компонентом газа является кислород, если ЭДС более 800 мВ, то основным компонентом является горючий газ (Н2, CH4 и др.). Если ЭДС ограничена в указанных выше пределах, то выключатель 10 переводят в положение "ВКЛЮЧЕНО", и с помощью источника тока 8 через измеритель тока 11 и дополнительную твердоэлектролитную ячейку пропускают определенный ток, переносимый ионами кислорода, благодаря чему создают в анализируемом газе определенную известную концентрацию кислорода, рассчитываемую в соответствии с законом Фарадея. Анализируемый газ далее омывает капилляр 3 диффузионной твердоэлектролитной ячейки 2. К электродам 4 и 5 ячейки последовательно подключены источник тока 7 (плюс к наружному электроду 4) и измеритель тока 6. Ток, протекающий через диффузионную твердоэлектролитную ячейку, позволяет судить о характере основного компонента газа. Это связано с тем, что указанный ток зависит не только от концентрации кислорода, но и от его коэффициента диффузии, который в свою очередь зависит от основного компонента анализируемого газа. Зависимость тока диффузионной твердоэлектролитной ячейки от концентрации кислорода для различных контрольных газов приведена на фиг.2. Как видно, например, при концентрации кислорода 40%, гелию соответствует ток 15 мА, азоту - 4,3 мА и т.д.
Экспериментально заявляемый способ был проверен на следующих газах: кислороде, водороде, углекислом газе, гелии и азоте. Дополнительная потенциометрическая и диффузионная твердоэлектролитные ячейки изготовлены на основе кислородионной твердоэлектролитной керамики состава ZrO2+0,1Y2O3. Потенциометрическая ячейка выполнена в виде трубки диаметром 8 мм и длиной 150 мм. В средней части трубки снаружи и внутри нанесены платиновые газопроницаемые электроды длиной 30 мм. Диффузионная ячейка изготовлена из конуса длиной 10 мм и средним диаметром 4 мм, в который вклеен с помощью высокотемпературного клея капилляр длиной 70 мм и внутренним диаметром 0,7 мм. На конусе снаружи и внутри по всей длине нанесены платиновые газопроницаемые электроды. Рабочие температуры: потенциометрической ячейки - (836±3)°С, диффузионной ячейки - (750±5)°С поддерживались трубчатыми нагревательными элементами. Анализируемый газ поступал последовательно в потенциометрическую и диффузионную ячейки со скоростью (при дозировании кислорода учитывалось добавление кислорода). При работе с углекислым газом, гелием и азотом с помощью дополнительной ячейки в анализируемом газе создавалась концентрация кислорода, равная 20%, путем пропускания через ячейку тока, равного 0,58 А. Измеренные значения ЭДС потенциометрической ячейки и тока через диффузионную ячейку приведены в таблице. Время установления показаний во всех случаях не превышало 3 мин.
Полученные данные подтверждают возможность определения основного компонента газа с помощью предлагаемого способа.
название | год | авторы | номер документа |
---|---|---|---|
Способ измерения парциального давления кислорода | 1989 |
|
SU1784907A1 |
ДАТЧИК КИСЛОРОДА ДЫМОВЫХ ГАЗОВ | 1994 |
|
RU2099697C1 |
СПОСОБ ИЗМЕРЕНИЯ ПАРЦИАЛЬНОГО ДАВЛЕНИЯ КИСЛОРОДА | 2003 |
|
RU2270438C2 |
СПОСОБ ИЗМЕРЕНИЯ КИСЛОРОДА В ГАЗОВЫХ СРЕДАХ | 2013 |
|
RU2532139C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ КИСЛОРОДА В ГАЗАХ | 2006 |
|
RU2314522C1 |
Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода | 2018 |
|
RU2683134C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КИСЛОРОДА И ВОДОРОДА В ГАЗАХ | 2005 |
|
RU2305278C1 |
Способ определения состава газа | 1985 |
|
SU1453301A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ ДОЛИ И ПАРЦИАЛЬНОГО ДАВЛЕНИЯ КИСЛОРОДА В ГАЗАХ | 2016 |
|
RU2635711C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ | 2015 |
|
RU2613328C1 |
Использование: в области аналитического приборостроения. Сущность изобретения: способ основан на применении двух твердоэлектролитных кислородионных ячеек: дополнительной и диффузионной. Анализируемый газ поступает в дополнительную ячейку, по ЭДС которой судят о восстановительном, окислительном или нейтральном характере основного компонента газа. Если газ имеет нейтральный характер, то с помощью дополнительной ячейки в газе создают определенную известную концентрацию кислорода и направляют газ в диффузионную ячейку, по току которой судят об основном компоненте газа. Техническим результатом изобретения является расширение области применения. 2 ил., 1 табл.
Способ определения основного компонента газа с помощью диффузионной твердоэлектролитной кислородоионной ячейки, заключающийся в том, что анализируемый газ пропускают через ячейку и измеряют диффузионный ток ячейки, отличающийся тем, что анализируемый газ перед подачей в диффузионную твердоэлектролитную ячейку пропускают через дополнительную потенциометрическую твердоэлектролитную кислородоионную ячейку, измеряют ЭДС дополнительной ячейки и, если сравнительной средой дополнительной твердоэлектролитной ячейки является атмосферный воздух, то при ЭДС менее минус 30 мВ основным компонентом газа является кислород, если ЭДС более 800 мВ, то основным компонентом является горючий газ (Н2, СН4 и др.), если ЭДС ограничена в указанных выше пределах, то через дополнительную твердоэлектролитную ячейку пропускают определенный ток, переносимый ионами кислорода, благодаря чему создают в анализируемом газе определенную известную концентрацию кислорода, измеряют ток диффузионной твердоэлектролитной ячейки и по зависимости тока диффузионной твердоэлектролитной ячейки от концентрации кислорода для различных контрольных газов определяют основной компонент газа.
Газоанализатор кислорода | 1990 |
|
SU1778663A1 |
Способ определения состава газа | 1985 |
|
SU1453301A1 |
SU 645437 A1, 10.07.1999 | |||
US 5476001 A, 19.12.1995. |
Авторы
Даты
2006-02-20—Публикация
2004-02-10—Подача