УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЗЕНИТНОГО УГЛА ИСКРИВЛЕНИЯ СТВОЛА СКВАЖИНЫ Российский патент 2006 года по МПК E21B47/22 G01C9/00 

Описание патента на изобретение RU2285797C1

Изобретение относится к нефтегазовой промышленности, а именно к бурению скважин, и предназначено для определения пространственного положения ствола скважины и, в частности, измерения зенитного угла искривления скважины в процессе бурения.

Существует большое число скважин, где контроль за пространственным положением их стволов имеет исключительно важное значение. К таким скважинам относятся наклонно направленные, глубокие, сверхглубокие и разведочные. Кроме того, задача своевременно обнаружить и не допустить дальнейшего искривления скважины возникает при проходке пластов со значительным падением и частым чередованием мягких и твердых пород. В этом случае необходимо измерять искривление скважины через каждые 25-50 м.

Существующие средства измерения искривления стволов скважины имеют существенные недостатки: низкую точность и надежность измерения и другие.

Известны устройства для измерения угла искривления скважины - инклинометры. Недостатком указанных устройств является отсутствие возможности контроля параметров искривления стволов непосредственно в процессе бурения горных пород.

Известно устройство, которое содержит рамку с эксцентричным грузом, электронный генератор частоты, в котором в качестве частотозадающего элемента используется камертон, снабженный эксцентричными грузами, шарнирно закрепленными в ветвях камертона. Недостатком этого устройства является использование в схеме генератора электронных устройств (транзисторов), температурный диапазон работы которых простирается лишь до 135°С. Это обстоятельство исключает применение устройства при контроле углов искривления глубоких скважин 5000, где температура достигает более 200°С. Кроме того, описываемое устройство имеет низкую виброустойчивость, обусловленную наличием подвижных грузов в ветвях камертона [см. А.С. СССР №313970, 1971 г.].

Известны устройства (см. А.С. СССР №473007, 1975 г. и №516808, 1976 г.), основанные на механической колебательной системе "баланс - спираль". Недостатком этих устройств является нелинейность их статической характеристики и наличие большого числа подвижных частей и в связи с этим множество зазоров, что приводит к появлению гистерезиса, что в конечном итоге снижает точность преобразования угла искривления в частоту электрических импульсов и виброустойчивость устройств.

Ближайшим прототипом является устройство (см. А.С. СССР №1209837, 1984 г.). Устройство состоит из рамки, выполненной в виде герметичной камеры, свободно вращающейся в опорах, U-образной трубки, жестко закрепленной в панели внутри рамки и заполненной жидкостью, например ртутью, оставляя свободной объем в каждом колене U-образной трубки. На нижней стенке рамки эксцентрично и жестко закреплен баллон со сжатым газом, выполняющий функции источника энергии и одновременно эксцентричного груза рамки. Для обеспечения постоянства расхода газа на баллоне установлен редуктор постоянного сечения. На панели закреплена система сопел: сопло питания, приемное сопло и выходное сопло, связанные между собой коммутационными каналами, размещенными внутри панели. U-образная трубка переводником соединена с панелью, соплом питания и приемным соплом. В панели размещен также струйный элемент, выполненный в виде поверхности специального профиля, а углубление в стенке канала струйного элемента между приемным соплом и соплом питания сообщается через отверстие в панели с полостью реактора, установленного внутри рамки и выполненного в виде перфорированного цилиндра, заполненного поглотителем, например оксидом меди.

Недостатком прототипа является низкая точность за счет малого изменения объема полости U-образной трубки, заполняемой газом, и в связи с этим малой девиацией частоты (не более 15%).

Технической задачей является создание виброустойчивого термобаростойкого устройства для контроля непосредственно в процессе бурения скважины зенитного угла искривления ствола. Это позволит оперативно управлять проводкой скважин по оптимальным траекториям.

Техническим результатом решения этой задачи является повышение точности и надежности измерения угла искривления скважины.

Предлагаемое устройство направлено на устранение указанных недостатков.

Для этого в устройстве для измерения зенитного угла искривления ствола скважины, содержащем рамку в виде герметичной камеры, вращающуюся на опорах, эксцентрично закрепленный в рамке источник питания в виде баллона со сжатым воздухом и струйный генератор, имеющий сообщаемое с баллоном со сжатым газом сопло питания, приемное сопло, выходное сопло, профиль с обтекаемой поверхностью и канал связи, согласно изобретению струйный генератор снабжен мембраной с закрепленным на ней контактом, закрепленным на оси подвижным полым отвесом, в верхней части которого выполнено приемное сопло с возможностью перемещения относительно обтекаемой поверхности профиля и сообщения с соплом питания, контактными кольцами, контактами съема информации и переключающим контактом, при этом выходное сопло генератора сообщено с мембранной полостью мембраны, а закрепленный на ней контакт связан через переключающий контакт с контактными кольцами, которые постоянно замкнуты с контактами съема информации, соединенными с каналом связи.

На фиг.1 показано устройство для измерения зенитного угла искривления ствола скважины.

Устройство, которое размещают над долотом в контейнере, содержит рамку 1, выполненную в виде герметичной камеры, свободно вращающуюся на опорах 2, струйный генератор 3, имеющий в своем составе сопло питания 4, приемное сопло 5, выполненное в отвесе 6, закрепленном на оси 7, выходное сопло 8, сообщающееся с полостью мембраны 9 с закрепленным на ней контактом 10, профиль 11 с обтекаемой поверхностью, источник питания, выполненный в виде баллона со сжатым газом 12, закрепленный эксцентрично в рамке, сообщающийся с соплом питания, контактные кольца 13, контакты 14 съема информации и переключающий контакт 15.

Работа устройства основана на эффекте Коанда - свойстве струи изменять направление при наличии поверхности специального профиля путем прилипания струи жидкости или газа к расположенной вблизи твердой стенке.

Устройство работает следующим образом.

Поток газа из сопла питания 4 обтекает обтекаемую поверхность, профиля 11 и заполняет полость отвеса 6 через отверстие приемного сопла 5. У обтекаемой поверхности создается противодавление. Это вызывает отрыв потока газа от нее и переход этого потока в выходное сопло 8 и далее в полость мембраны 9.

При этом давление в выходном сопле 8 возрастает скачкообразно и удерживается на максимальном уровне до тех пор, пока противодавление в приемном сопле 5 не снизится до величины, при которой поток вновь начнет обтекать поверхность специального профиля и, следовательно, заполнять полость отвеса 6.

Частота колебаний определяется по формуле:

где f - частота колебаний, Гц;

С - постоянный коэффициент, зависящий от конструктивных особенностей генератора;

V - свободный объем полости отвеса 6, см3.

С изменением угла искривления рамка 1 с эксцентрично закрепленным в ней баллоном 12 поворачивается под действием силы тяжести и полый отвес 6 располагается в плоскости искривления скважины. При этом приемное сопло 5 струйного генератора 3 перемещается относительно струи, вытекающей из сопла питания 4 от оси струи к ее периферии, что приводит к уменьшению времени заполнения полости отвеса 6 (т.к. расход струи газа питания на периферии меньше, чем на ее оси), и в связи с этим уменьшению частоты колебаний струйного генератора. Таким образом, частота колебаний струйного генератора оказывается пропорциональной измерению зенитного угла искривления скважины. Далее серия пневматических импульсов, полученных на выходном сопле 6 струйного генератора 3, поступает в мембранную полость мембраны 9, мембрана прогибается и замыкает (размыкает) контакты 10, 15. Контакты 14, постоянно замкнутые с контактными кольцами 13, обеспечивают передачу полученных в результате замыкания и размыкания контактов 10, 15 сигналов в проводной канал связи забоя с устьем скважины.

На фиг.2 приведена экспериментальная зависимость частоты колебаний струйного генератора от изменения зенитного угла искривления.

Таким образом, предлагаемое устройство обеспечивает контроль зенитного угла искривления скважины непосредственно в процессе бурения, обладает высокой точностью измерения за счет высокой девиации частоты, достигающей 90% в пределах изменения угла от 0 до 35° (фиг.2), и высокой надежностью за счет сокращения числа подвижных элементов в конструкции устройства.

Источники информации

1. SU 313970 А1, кл. 21 В 47/02, 07.09.1971.

2. SU 473007, кл. Е 21 В 47/022, 05.06.1975.

3. SU 516808, кл. Е 21 В 47/022, 05.06.1976.

4. SU 1209837, кл. Е 21 В 47/022, 07.02.1986 (прототип).

Похожие патенты RU2285797C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЗЕНИТНОГО УГЛА ИСКРИВЛЕНИЯ СТВОЛА СКВАЖИНЫ 2007
  • Есауленко Владимир Николаевич
  • Дегтярева Анна Михайловна
  • Есауленко Николай Владимирович
  • Никульшин Иван Викторович
RU2349750C2
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИСКРИВЛЕНИЯ СКВАЖИН 2011
  • Есауленко Владимир Николаевич
  • Шевченко Максим Алексеевич
RU2468201C2
Устройство для измерения угла искривления скважины 1986
  • Бородин Дмитрий Анатольевич
  • Есауленко Владимир Николаевич
  • Есауленко Светлана Ивановна
SU1382936A2
Устройство для измерения угла искривления скважины 1984
  • Бородин Дмитрий Анатольевич
  • Есауленко Владимир Николаевич
  • Есауленко Сергей Владимирович
SU1209837A1
Устройство для определения параметров искривления скважины 1986
  • Есауленко Владимир Николаевич
  • Малюга Анатолий Георгиевич
  • Григулецкий Владимир Георгиевич
SU1332007A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЗЕНИТНОГО УГЛА ИСКРИВЛЕНИЯ СКВАЖИНЫ 2020
  • Есауленко Владимир Николаевич
  • Есауленко Николай Владимирович
  • Чихоткин Виктор Федорович
RU2752202C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ В СКВАЖИНЕ 2008
  • Есауленко Владимир Николаевич
  • Есауленко Николай Владимирович
  • Никульшин Иван Викторович
RU2381361C2
Устройство для измерения зенитного угла искривления скважины 2018
  • Есауленко Владимир Николаевич
  • Судакова Галина Евгеньевна
  • Перов Виталий Николаевич
RU2692365C1
Устройство для измерения температуры в скважинах 1985
  • Есауленко Владимир Николаевич
  • Есауленко Светлана Ивановна
  • Бородин Дмитрий Анатольевич
SU1298365A1
Устройство для измерения зенитного угла искривления скважины 2016
  • Есауленко Владимир Николаевич
  • Бакаева Ирина Ильдаровна
  • Логинов Иван Владимирович
RU2649187C2

Иллюстрации к изобретению RU 2 285 797 C1

Реферат патента 2006 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЗЕНИТНОГО УГЛА ИСКРИВЛЕНИЯ СТВОЛА СКВАЖИНЫ

Изобретение относится к нефтегазовой промышленности, а именно к бурению скважин, и предназначено для определения пространственного положения стволов бурящихся скважин и прежде всего наклонно направленных глубоких и разведочных скважин. Техническим результатом изобретения является повышение точности и надежности измерения угла искривления скважины и оперативное управление проводкой скважин по оптимальным траекториям. Для этого устройство содержит рамку в виде герметичной камеры, вращающуюся на опорах, эксцентрично закрепленный в рамке источник питания в виде баллона со сжатым воздухом и струйный генератор (СГ), имеющий сообщаемое с баллоном со сжатым газом сопло питания, приемное сопло, выходное сопло, профиль с обтекаемой поверхностью и канал связи. При этом СГ снабжен мембраной с закрепленным на ней контактом, закрепленным на оси подвижным полым отвесом, в верхней части которого выполнено приемное сопло с возможностью перемещения относительно обтекаемой поверхности профиля и сообщения с соплом питания, контактными кольцами, контактами съема информации и переключающим контактом. Выходное сопло СГ сообщено с мембранной полостью мембраны. Закрепленный на мембране контакт связан через переключающий контакт с контактными кольцами, которые постоянно замкнуты с контактами съема информации, соединенными с каналом связи. 2 ил.

Формула изобретения RU 2 285 797 C1

Устройство для измерения зенитного угла искривления ствола скважины, содержащее рамку в виде герметичной камеры, вращающуюся на опорах, эксцентрично закрепленный в рамке источник питания в виде баллона со сжатым воздухом и струйный генератор, имеющий сообщаемое с баллоном со сжатым газом сопло питания, приемное сопло, выходное сопло, профиль с обтекаемой поверхностью и канал связи, отличающееся тем, что струйный генератор снабжен мембраной с закрепленным на ней контактом, закрепленным на оси подвижным полым отвесом, в верхней части которого выполнено приемное сопло с возможностью перемещения относительно обтекаемой поверхности профиля и сообщения с соплом питания, контактными кольцами, контактами съема информации и переключающим контактом, при этом выходное сопло генератора сообщено с мембранной полостью мембраны, а закрепленный на ней контакт связан через переключающий контакт с контактными кольцами, которые постоянно замкнуты с контактами съема информации, соединенными с каналом связи.

Документы, цитированные в отчете о поиске Патент 2006 года RU2285797C1

Устройство для измерения угла искривления скважины 1984
  • Бородин Дмитрий Анатольевич
  • Есауленко Владимир Николаевич
  • Есауленко Сергей Владимирович
SU1209837A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УГЛА ИСКРИВЛЕНИЯСКВАЖИН 0
  • В. Н. Есауленко, Л. А. Афонин, А. И. Каган А. Леонов
SU313970A1
Устройство для измерения угла искривления скважины 1974
  • Афонин Леонид Алексеевич
  • Есауленко Владимир Николаевич
SU473007A2
Устройство для измерения угла искривления скважины 1974
  • Афонин Леонид Алексеевич
  • Есауленко Владимир Николаевич
SU516808A1
Устройство для определения параметров искривления скважины 1986
  • Есауленко Владимир Николаевич
  • Малюга Анатолий Георгиевич
  • Григулецкий Владимир Георгиевич
SU1332007A1
Устройство для измерения угла искривления скважины 1986
  • Бородин Дмитрий Анатольевич
  • Есауленко Владимир Николаевич
  • Есауленко Светлана Ивановна
SU1382936A2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УГЛА НАКЛОНА СКВАЖИНЫ 1990
  • Дмитриев Г.Ю.
  • Николаев В.Б.
  • Лабзов Ю.В.
  • Бухтеев Г.Н.
  • Панов П.Д.
RU2032808C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ИСКРИВЛЕНИЯ СКВАЖИНЫ 1999
  • Репин А.А.
  • Алексеев С.Е.
RU2166085C1
US 4047306 A, 13.09.1977
US 4506745 A, 26.03.1985
СПОСОБ ОБЛЕГЧЕНИЯ ПЕРЕДАЧИ ОБСЛУЖИВАНИЯ УСТРОЙСТВА МОБИЛЬНОЙ СВЯЗИ 2012
  • Ахлувалия Джагдип Сингх
RU2521482C1

RU 2 285 797 C1

Авторы

Есауленко Владимир Николаевич

Дегтярева Анна Михайловна

Есауленко Николай Владимирович

Даты

2006-10-20Публикация

2005-02-07Подача