Изобретение относится к области материаловедения и ядерной техники и может быть использовано в металлургии цветных металлов, в реакторном материаловедении, в теплоэнергетике и других отраслях техники.
Известен способ защиты конструкционных материалов от коррозии в водных растворах кислот, заключающийся в том, что на поверхность сталей наносят слой молибденового покрытия [1. - Бичуя А.Л. и др. Коррозионная стойкость молибденовых покрытий, полученных методом контактного плавления. Физико-химическая механика материалов, 1969, т.5, №6, с.704-708]. Так, например, на сталь 1Х18Н9Т молибден напыляют в вакууме с помощью электронной пушки СП-30, а на сплав ЭИ-437Б нанесение молибденового покрытия осуществляют методом разложения паров гексакарбонила молибдена. На поверхности образцов формируется слой молибдена толщиной 0,02 мм. Поскольку слой покрытия получают при сравнительно низких (600-800°С) температурах, прочное сцепление молибдена с основным металлом отсутствует. Поэтому покрытые таким способом образцы подвергают контактному плавлению при 1270-1320°С в течение 15 мин, а затем диффузионному отжигу при 900°С (1-3 ч) и при 1000°С (2-4 ч).
Недостаток известного способа защиты [1] заключается в том, что применение молибденовых покрытий неприемлемо в условиях работы при повышенных температурах в контакте с жидким свинцом, висмутом или их сплавами по следующим причинам: во-первых, в покрытии возникают дефекты, микротрещины и т.п. нарушения как вследствие действия внутренних напряжений в слое покрытия, так и из-за термомеханических напряжений, которые могут иметь место уже в процессе эксплуатации материала с защитным покрытием; во-вторых, технически невозможно воссоздать параметры технологического процесса нанесения покрытия известным способом в эксплуатационных условиях, когда требуется восстановить ("залечить") покрытие в зоне его локального повреждения (микротрещины и т.п. дефекты).
Известен способ защиты конструкционных материалов от коррозии в свинце, заключающийся в том, что на поверхность сталей наносят покрытие коррозионно-стойкого состава: нитриды и бориды титана, циркония, карбиды вольфрама, хрома и алюмомагниевую шпинель. Слой покрытия формируют путем плазменного напыления. При этом предполагают, что создание покрытия из коррозионно-стойких в свинце керамик предотвратит коррозионное разрушение матрицы сталей в процессе эксплуатации при повышенных температурах [2. - Material Behavior and Physical Chemistry in Liquid Metal Systems./Ed. by H.U.Borstedt. New York: Plenum Press, 1982, p.253-264].
Недостаток известного способа защиты [2] аналогичен тому, который был выше отмечен для другого [1] известного способа: дефекты, микротрещины в покрытии, в конечном счете, вызывают появление и развитие очагов коррозионного поражения матрицы защищаемых сталей.
Известен наиболее близкий по своей технической сущности к заявленному способ защиты конструкционных сталей от коррозии в свинцовом теплоносителе и его расплавах, заключающийся в формировании на поверхности сталей защитного покрытия в виде оксидной пленки на основе шпинели Ме3O4 толщиной 1-50 мкм посредством обработки места контакта сталь - жидкометаллическая среда потоком свинца или его сплава, содержащим кислород с термодинамической активностью 10-4-100. Такая обработка испытуемых материалов позволяет создать на их поверхности плотную, хорошо сцепленную с матрицей оксидную пленку на основе шпинели Ме3O4, имеющую зону внутреннего окисления [3. - Громов Б.Ф. и др. Способ защиты конструкционных материалов от коррозии при повышенных температурах в жидком свинце, висмуте и их сплавах. Патент RU 2066710 С1, МПК C 23 F 11/00, 09.20.1996] - прототип.
Недостаток известного способа защиты [3] заключается в возможном ухудшении прочностных свойств или разрушении оксидной защитной пленки вследствие контакта жидкометаллической среды с атмосферным воздухом или рабочим телом (Н2О) в аварийных ситуациях.
Решаемая задача - повышение качества и эффективности защиты от коррозионного разрушения конструкционного материала в свинцовом теплоносителе и его расплавах.
Технический результат - повышение стойкости сталей в процессе эксплуатации в свинцовом теплоносителе и его расплавах.
Этот технический результат достигается тем, что в способе защиты конструкционных сталей от коррозии в свинцовом теплоносителе и его расплавах, включающем формирование на поверхности сталей защитного покрытия в виде оксидной пленки посредством обработки места контакта сталь - жидкометаллическая среда потоком свинца или его сплава, содержащим кислород с термодинамической активностью 10-4-100, в поток свинца или его сплава вводят углекислый газ или его смесь с инертным газом до 50 об.%.
В процессе испытаний мелкодисперсная смесь (СО2 - Ar) воздействовала на конструкционные материалы, вследствие чего происходила цементация (упрочнение) поверхности материалов, контактирующих с жидкометаллическим теплоносителем.
Пример осуществления способа.
Для оценки эффективности защиты конструкционных материалов от жидкометаллической коррозии по предлагаемому способу проводились два вида испытаний в жидком свинце и его расплавах: конвекционные петлевые испытания и испытания на циркуляционном контуре.
В первом случае свинец находился в емкости в расплавленном состоянии при температуре около 500°С. Затем осуществлялся барботаж СО2 через слой свинца. В эту емкость при барботаже методом погружения устанавливались пластины из стали (12Х18Н10Т, 10Х9НСМФ, ЭП-302, ЭИ-823) и ванадия. Все образцы подвергались испытанию в среде расплавленного свинца в течение 400 часов.
При испытаниях на циркуляционном контуре стальные трубы (08Х18Н10Т, ЭИ-211) находились в потоке свинца, а также расплава свинца с висмутом в течение 1000 часов. В ходе испытаний на всас насоса подавалась газовая смесь (CO2 - аргон).
Испытания производились при температуре 350-500°С, средней скорости жидкометаллического теплоносителя 0,1-3,0 м/с, содержании термодинамически активного кислорода в жидком металле 10-4-100, содержании углекислого газа в газовой смеси 50-100 об.%. Все вышеуказанные параметры являются рабочими параметрами ядерной энергетической установки типа БРЕСТ.
После экспериментов замерялась микротвердость поверхности металла, контактировавшей со свинцом и его расплавами, и анализировалось коррозионное воздействие рабочей среды на испытуемые металлы.
На образцах, оксидированных по предлагаемому способу, коррозии не обнаружено, не отмечено изменений толщины и структуры поверхностного оксидного и цементированного слоя.
Таким образом, проведенные испытания показали преимущество предлагаемого способа защиты сталей от коррозии в жидком свинце и его расплавах с висмутом по отношению к прототипу.
Преимущества перед другими способами заключаются: в формировании и деформировании оксидных защитных покрытий потоком свинец (и его сплавов с висмутом) - газ во время эксплуатации энергетической установки в условиях, как при нормальных, так и в аварийных условиях.
Данный способ защиты от коррозии может быть использован в проектируемых и создаваемых ЯЭУ, охлаждаемых свинцом и его сплавами с висмутом, т.к. он позволяет формировать и доформировывать защитные покрытия в виде оксидной пленки на поверхностях конструкционных сталей во время эксплуатации установки путем введения в поток жидкого свинца и его сплавов с висмутом углекислого и инертного газов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЗАЩИТЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ОТ КОРРОЗИИ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ В ЖИДКОМ СВИНЦЕ, ВИСМУТЕ И ИХ СПЛАВАХ | 1993 |
|
RU2066710C1 |
Способ поддержания концентрации кислорода в свинце в ампульном облучательном устройстве | 2022 |
|
RU2797437C1 |
СПОСОБ ВНУТРИКОНТУРНОЙ ПАССИВАЦИИ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ ЯДЕРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ | 2013 |
|
RU2543573C1 |
БЫСТРЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ | 2011 |
|
RU2456686C1 |
СПОСОБ ВНУТРИКОНТУРНОЙ ПАССИВАЦИИ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ ЯДЕРНОГО РЕАКТОРА | 2013 |
|
RU2542329C1 |
ЯДЕРНЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ, СИСТЕМА ДЛЯ КОНТРОЛЯ ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ КИСЛОРОДА В ТАКИХ РЕАКТОРАХ И СПОСОБ КОНТРОЛЯ ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ КИСЛОРОДА | 2013 |
|
RU2545517C1 |
СПОСОБ УВЕЛИЧЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ СТАЛИ ДЛЯ КОНТУРА С ТЯЖЕЛЫМ ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ | 2014 |
|
RU2584361C1 |
Ядерная установка с реактором с жидкометаллическим теплоносителем | 2016 |
|
RU2632814C1 |
СПОСОБ ФОРМИРОВАНИЯ ЗАЩИТНОГО ОКСИДНОГО ПОКРЫТИЯ НА СТАЛЬНОЙ ПОВЕРХНОСТИ В РАСПЛАВЕ Pb-Bi | 2015 |
|
RU2603761C2 |
СПЛАВ НА ОСНОВЕ FeCrAl ДЛЯ АТОМНЫХ РЕАКТОРОВ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ | 2021 |
|
RU2785220C1 |
Изобретение относится к области материаловедения и ядерной техники и может быть использовано в металлургии цветных металлов, в реакторном материаловедении, в теплоэнергетике и других отраслях техники. Способ включает формирование на поверхности сталей защитного покрытия в виде оксидной пленки посредством обработки места контакта сталь - жидкометаллическая среда потоком свинца или его сплава, содержащим кислород с термодинамической активностью 10-4-100, при этом в поток свинца или его сплава вводят углекислый газ или его смесь с инертным газом - до 50 об.%. Технический результат: повышение стойкости сталей в процессе эксплуатации в свинцовом теплоносителе и его расплавах.
Способ защиты конструкционных сталей от коррозии в свинцовом теплоносителе и его расплавах, включающий формирование на поверхности сталей защитного покрытия в виде оксидной пленки посредством обработки места контакта сталь - жидкометаллическая среда потоком свинца или его сплава, содержащим кислород с термодинамической активностью 10-4-100, отличающийся тем, что в поток свинца или его сплава вводят углекислый газ или его смесь с инертным газом - до 50 об.%.
СПОСОБ ЗАЩИТЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ОТ КОРРОЗИИ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ В ЖИДКОМ СВИНЦЕ, ВИСМУТЕ И ИХ СПЛАВАХ | 1993 |
|
RU2066710C1 |
СПОСОБ ПОДДЕРЖАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ СТАЛЬНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА СО СВИНЕЦСОДЕРЖАЩИМ ТЕПЛОНОСИТЕЛЕМ | 1996 |
|
RU2100480C1 |
CATHCAVT J.V | |||
et al | |||
THE MASS JRANSTER PROPERTIES OF VARIOUS METALS AND ALLOYS IN LIGUID LEAD/ CLVROSION, 1956, V.12, №2, p.43-47. |
Авторы
Даты
2006-10-27—Публикация
2005-03-21—Подача