СПОСОБ УВЕЛИЧЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ СТАЛИ ДЛЯ КОНТУРА С ТЯЖЕЛЫМ ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ Российский патент 2016 года по МПК C21D1/70 C23C22/00 

Описание патента на изобретение RU2584361C1

Область техники

Изобретение относится к ядерной технике и может быть использовано для обеспечения коррозионной стойкости стальных поверхностей контура с тяжелым жидкометаллическим теплоносителем: общие способы или устройства для термообработки, например отжига, закалки, отпуска. Ингибирование коррозии металлического материала путем обработки поверхности, подвергающейся опасности коррозии, ингибиторами или добавлением ингибиторов к корродирующим средам.

Предшествующий уровень техники

Проблема защиты от коррозии конструкционных материалов из различных металлов и сплавов, работающих в агрессивных жидких и газовлажных средах, например морских судов, железнодорожного и автомобильного транспорта, трубопроводов и оборудования газовой, химической, нефтехимической и других отраслей народного хозяйства, имеет существенное значение. В ядерно-энергетической отрасли одной из основных проблем является обеспечение надежной работоспособности компонентов тепловыделяющего элемента, его оболочки и контура теплоносителя. Именно к этим элементам предъявляются высокие требования по коррозионной стойкости, механической прочности в сочетании с хорошей пластичностью.

В металлургии известен «Способ защиты поверхности металла от окисления» по патенту SU 1157086 от 23.05.83, в котором для повышения защитной способности от окисления металл сначала предварительно подогревают до температуры 75-95°C, затем наносят состав, содержащий воду, марганцевую руду, серебристый графит и растворимый силикат натрия с модулем 2,2-2,5. Затвердевая, состав образует покрытие, которое преграждает доступ кислорода к металлу, затормаживая окисление и соответственно снижая образование окалины.

Недостатками способа являются необходимость предварительного нагрева металла перед его покрытием, низкие защитные свойства покрытия, т.к. образуется достаточно высокое количество окалины (40 г/кг), изъязвленная поверхность металла после его нагрева, низкое качество поверхности металла.

Известен «Способ защиты поверхности металла от окисления при нагреве» по патенту RU 2137862. Он включает нанесение состава, содержащего графит, диоксид кремния, ингибитор окисления и связующее, на окалину, причем количество ингибитора окисления при длительности нагрева до 5 ч определяют согласно зависимости Q=e0,35(4+t/1000), а в варианте способа при длительности нагрева от 5 до 18 ч Q=е2,6(-0,3+t/1000), где Q - количество ингибитора окисления, мас. %, е - основание натурального логарифма; t - температура нагрева, °C. Состав смеси для защиты поверхности металла от окисления при нагреве содержит следующие компоненты, мас. %: графит 2-5; диоксид кремния 1 -3; ингибитор окисления 3-20; связующее - остальное.

Недостатками этого способа являются необходимость предварительного нагрева металла перед его покрытием и низкие защитные свойства покрытия.

Известно средство к антикоррозионной защите в виде ИНГИБИТОРОВ КОРРОЗИИ по патентам RU 2160326 и RU 2160792. Они могут быть использованы для защиты от коррозии различных металлов и сплавов в широком диапазоне условий их эксплуатации. Они термоустойчивы (до 600°С в смеси с кремнийорганическими композициями), содержат мелкодисперсную двуокись кремния и антикоррозионные компоненты, в качестве которых предложено использовать смесь оксида магния, гидроксида и/или алюмосиликата кальция при соотношении в пересчете на элементы, вес. %: Si 70-80%; Mg 15-20%; Са 5-10%. Двуокись кремния предложено использовать с размером зерен до 300 мкм.

Недостатки рассматриваемых ингибиторов заключаются в невозможности их использования в реакторных установках с тяжелым жидкометаллическим теплоносителем (ТЖМТ).

Известен «Способ поддержания коррозионной стойкости стального циркуляционного контура со свинецсодержащим теплоносителем» RU 2100480. Он включает создание на внутренней поверхности контура антикоррозионного покрытия из оксидов компонентов конструкционных сталей в процессе эксплуатации контура за счет поддержания концентрации растворенного в теплоносителе кислорода не ниже значения, определяемого по формуле lgC=-0,332790/Т+lgCs+lgjCPb, где С - концентрация кислорода, растворенного в теплоносителе, lg - обозначение десятичного логарифма; Т - максимальная температура теплоносителя в контуре; Cs - концентрация растворенного в теплоносителе кислорода при насыщении, мас. % и при температуре Т; j - коэффициент термодинамической активации свинца в теплоносителе; CPb - концентрация свинца в теплоносителе, мас. %. При этом концентрацию растворенного в теплоносителе кислорода поддерживают путем введения в циркуляционный контур паров воды, а также путем введения в него кислорода. Причем кислород вводят в смеси с инертным газом путем эжекции в теплоноситель или на поверхность раздела теплоносителя и газовой фазы. Более того, концентрацию кислорода в теплоносителе поддерживают путем растворения оксидов, которые предварительно вводят в циркуляционный контур, а затем их выкристаллизовывают из теплоносителя и накапливают в фильтре.

Недостатки способа, основанного на термодинамическом контроле концентрации свинца и кислорода, обеспечивают грубую оценку коррозионной стойкости стального циркуляционного контура.

Прототипом предлагаемого изобретения являются отдельные предложения по обработке стальных поверхностей [Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants. DOE Agency №: DE-FG07-04ID14600. Final Report. The University Wisconsin, Madisov, in collaboration with Los Alamos National Laboratory, NM. August 2007]. В прототипе скорость понижения коррозии в свинцовом теплоносителе достигают путем полировки стальной поверхности абразивными шкурками до достижения шероховатости поверхности, контактирующей со свинецсодержащим теплоносителем, значения среднеквадратического отклонения профиля, Rq, примерно 0,02 мкм (Ra≈0,8Rq, где Ra - среднее арифметическое отклонение профиля).

Недостатками прототипа являются:

ограниченность исследований (исследования проводились при термодинамической активности кислорода (ТДА[O])=1·10-6 мас. %, температуре 535°C и скорости свинцового теплоносителя 1,2 м/с в течение 630 часов, что исключает возможность анализа результатов режима контурной пассивации стальных поверхностей при ТДА[О]≥1·10-6 мас. % в свинцовом теплоносителе;

отсутствие таких данных по технологическим режимам полировки, как сила прижатия и скорость движения абразива (шкурки) при полировке;

отсутствуют данные о других способах механической обработки как в целом стальной заготовки, так и поверхности, которая должна впоследствии контактировать со свинцовым теплоносителем;

не рассмотрены способы термообработки, термомеханической, химикотермической обработки, как в целом стальной заготовки, так и поверхности, которая должна впоследствии контактировать со свинцовым теплоносителем.

Раскрытие изобретения

Задачей заявляемого технического решения является увеличение надежной работоспособности деталей реакторной установки: тепловыделяющего элемента, его оболочки и контура теплоносителя за счет повышения коррозионной стойкости деталей, механической прочности в сочетании с хорошей пластичностью.

Технический результат, получаемый от реализации предлагаемого технического решения, заключается в увеличении коррозионной стойкости стали в среде ТЖМТ (до 2-4 и более раз в отдельных режимах) в диапазоне температур от 300 до 670°С.

Сущность предлагаемого изобретения заключается в том, что в способе, включающем освобождение изделия от внешних загрязнений и механическую обработку его поверхностей, контактирующих с тяжелым жидкометаллическим теплоносителем. При этом поверхность полируют до шероховатости Ra<0,2. Во время полировки поверхностный слой зерен ориентируют преимущественно в одном направлении и по одной линии, касательной к поверхности изделия. После полировки среднее количество ориентированных зерен поверхностного слоя должно быть не менее 50% от общего их количества. Затем очищают поверхность изделия и проводят ее пассивацию до получения толщины оксидной пленки не менее 1,5 мкм. Контурную пассивацию проводят в среде тяжелого жидкометаллического теплоносителя с термодинамической активностью кислорода от 10-6 до 10-5. Внеконтурную ассивацию проводят высокотемпературным паром воды в течение нескольких десятков минут или часов при температуре более 400°С.

Осуществление изобретения

В соответствии с сущностью предлагаемого изобретения вначале обеспечивают доступ к необходимым поверхностям изделия и очищают их от внешних загрязнений. Затем проводят полировку поверхности изделия до шероховатости Ra<0,2 и структуризацию поверхностного слоя глубиной не менее 15 мкм таким образом, что зерна в нем пластически деформируются по одной линии, касательной к поверхности детали. При этом полировку детали ведут только в направлении движения теплоносителя. В результате полировки, полученный поверхностный слой зерен, глубиной не менее 15 мкм, приобретает ориентацию в одном направлении и по одной линии, касательной к поверхности детали. Сформировавшаяся структура существенно повышает защитные свойства оксидной пленки. Ее усиливают путем пассивации поверхности детали за счет формирования более прочной и сплошной структуры. Пассивацию проводят до получения оксидной пленки толщиной не менее 1,5 мкм. Среднее количество зерен, ориентированных изложенным выше способом в поверхностном слое, должно быть не менее 50% от общего количества. Их подсчет проводят способом, изложенным в ГОСТ 5639-82 или ему подобным требованиям.

Промышленная применимость изобретения

В качестве примера реализации изобретения рассмотрим трубу. Вначале ее обрабатывают полировальным кругом с тонким абразивом круговыми движениями по внешнему периметру поперечного сечения трубы до достижения Ra от 0,05 до 0,2 и получения по глубине поверхностного слоя не менее 15 мкм. Образующиеся зерна ориентируют преимущественно в одном направлении и по одной линии, касательной к поверхности детали. Среднее количество зерен поверхностного слоя должно быть не менее 50% от их общего количества в этом слое. После завершения полировки поверхность трубы очищают и проводят пассивацию поверхности трубы. Для этого она может быть установлена в контур со свинецсодержащим теплоносителем. Затем проводят внутриконтурную пассивацию поверхности трубы путем поддержания в нем необходимой ТДА кислорода при температуре выше 400°C до образования сплошной защитной оксидной пленки толщиной не менее 1,5 мкм на контактирующей со свинецсодержащим теплоносителем поверхности трубы, скорость теплоносителя более 0,01 м/с. В другом варианте трубу можно выдерживать в камере с паром воды в течение нескольких десятков минут или часов при температуре более 400°С до образования сплошной защитной оксидной пленки толщиной не менее 1,5 мкм на контактирующей с теплоносителем поверхности.

Заявленный способ увеличения коррозионной стойкости стали для контура с тяжелым жидкометаллическим теплоносителем решает поставленную задачу и может быть использован для защиты металлов и сплавов от коррозии в широком диапазоне условий их эксплуатации. Более того, создаваемая сплошная защитная оксидная пленка на поверхности изделия существенно снижает проницаемость диффузионного потока компонентов стали в теплоноситель и атомов теплоносителя в сталь. При этом существенную роль играет получаемая ориентация зерен. Пленка обретает новое свойство и уменьшает межкристаллитную коррозию в поверхностном слое стали. Преимущество предложенного способа увеличения коррозионной стойкости стали, по сравнению с прототипом, заключается в обеспечении термической устойчивости работы изделия при температуре свыше 600°C.

Похожие патенты RU2584361C1

название год авторы номер документа
СПОСОБ УВЕЛИЧЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ, МЕТАЛЛИЧЕСКОЕ ИЗДЕЛИЕ С УВЕЛИЧЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ 2014
  • Шарикпулов Саид Мирфаисович
RU2595184C2
Ядерная установка с реактором с жидкометаллическим теплоносителем 2016
  • Шарикпулов Саид Мирфаисович
RU2632814C1
СПОСОБ ВНУТРИКОНТУРНОЙ ПАССИВАЦИИ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ ЯДЕРНОГО РЕАКТОРА 2013
  • Мартынов Петр Никифорович
  • Асхадуллин Радомир Шамильевич
  • Иванов Константин Дмитриевич
  • Легких Александр Юрьевич
  • Стороженко Алексей Николаевич
  • Филин Александр Иванович
  • Булавкин Сергей Викторович
  • Шарикпулов Саид Мирфаисович
  • Боровицкий Степан Артемович
RU2542329C1
СПОСОБ ВНУТРИКОНТУРНОЙ ПАССИВАЦИИ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ ЯДЕРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ 2013
  • Мартынов Петр Никифорович
  • Асхадуллин Радомир Шамильевич
  • Стороженко Алексей Николаевич
  • Иванов Константин Дмитриевич
  • Легких Александр Юрьевич
  • Шарикпулов Саид Мирфаисович
  • Филин Александр Иванович
  • Булавкин Сергей Викторович
RU2543573C1
ЯДЕРНЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ, СИСТЕМА ДЛЯ КОНТРОЛЯ ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ КИСЛОРОДА В ТАКИХ РЕАКТОРАХ И СПОСОБ КОНТРОЛЯ ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ КИСЛОРОДА 2013
  • Асхадуллин Радомир Шамильевич
  • Иванов Константин Дмитриевич
  • Мартынов Петр Никифорович
  • Стороженко Алексей Николаевич
RU2545517C1
БЫСТРЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2011
  • Большов Леонид Александрович
  • Солодов Александр Анатольевич
RU2456686C1
СПОСОБ ФОРМИРОВАНИЯ ЗАЩИТНОГО ОКСИДНОГО ПОКРЫТИЯ НА СТАЛЬНОЙ ПОВЕРХНОСТИ В РАСПЛАВЕ Pb-Bi 2015
  • Мартынов Петр Никифорович
  • Асхадуллин Радомир Шамильевич
  • Ульянов Владимир Владимирович
  • Гулевский Валерий Алексеевич
  • Круглов Александр Борисович
  • Стручалин Павел Геннадьевич
  • Харитонов Владимир Степанович
RU2603761C2
СПОСОБ ПАССИВАЦИИ СТАЛЬНОЙ ПОВЕРХНОСТИ 2012
  • Исаков Виктор Павлович
  • Миреев Тимур Алданович
  • Урусов Александр Александрович
  • Федоров Евгений Николаевич
RU2533402C2
СПОСОБ ЗАЩИТЫ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ОТ КОРРОЗИИ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ В ЖИДКОМ СВИНЦЕ, ВИСМУТЕ И ИХ СПЛАВАХ 1993
  • Громов Б.Ф.
  • Демишонков А.П.
  • Иванькин О.А.
  • Комраков Г.С.
  • Тошинский Г.И.
  • Ячменев Г.С.
RU2066710C1
СПОСОБ ФОРМИРОВАНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ МЕТАЛЛА 2009
  • Орлов Виктор Владимирович
  • Леонов Виктор Николаевич
  • Орлова Екатерина Андреевна
RU2439203C2

Реферат патента 2016 года СПОСОБ УВЕЛИЧЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ СТАЛИ ДЛЯ КОНТУРА С ТЯЖЕЛЫМ ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ

Изобретение относится к ядерной технике. Для обеспечения надежной работоспособности изделий контура с тяжелым жидкометаллическим теплоносителем за счет повышения коррозионной стойкости стали и механической прочности осуществляют очистку поверхности изделия от внешних загрязнений и последующую механическую обработку поверхностей, контактирующих с теплоносителем. Поверхность изделия полируют до достижения шероховатости Ra<0,2 и глубины не менее 15 мкм. При этом поверхностный слой зерен ориентируют преимущественно в одном направлении и по одной линии, касательной к поверхности изделия, причем среднее количество ориентированных зерен поверхностного слоя должно быть не менее 50% от общего их количества. После полировки проводят пассивацию поверхности до получения толщины оксидной пленки не менее 1,5 мкм. Кроме того, контурную пассивацию проводят в среде тяжелого жидкометаллического теплоносителя с термодинамической активностью кислорода от 10-6 до 10-5, а внеконтурную - высокотемпературным паром воды в течение нескольких десятков минут или часов при температуре более 400°C. 2 з.п. ф-лы.

Формула изобретения RU 2 584 361 C1

1. Способ обработки поверхности стальных изделий, контактирующей с тяжелым жидкометаллическим теплоносителем, включающий очищение от внешних загрязнений и полировку поверхности изделия, контактирующей с теплоносителем, отличающийся тем, что поверхность изделия полируют до достижения шероховатости Ra<0,2 и глубины не менее 15 мкм, причем поверхностный слой зерен ориентируют преимущественно в одном направлении и по одной линии, касательной к поверхности изделия, при этом среднее количество ориентированных зерен поверхностного слоя составляет не менее 50% от общего их количества, затем проводят пассивацию поверхности изделия до получения толщины оксидной пленки не менее 1,5 мкм.

2. Способ по п.1, отличающийся тем, что контурную пассивацию поверхности изделия проводят в среде тяжелого жидкометаллического теплоносителя с термодинамической активностью кислорода от 10-6 до 10-5.

3. Способ по п. 1, отличающийся тем, что проводят внеконтурную пассивацию поверхности стального изделия высокотемпературным паром воды в течение нескольких десятков минут или часов при температуре более 400°С.

Документы, цитированные в отчете о поиске Патент 2016 года RU2584361C1

СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКОЙ АППАРАТУРЫ, ПРЕДНАЗНАЧЕННОЙ ДЛЯ ЭКСПЛУАТАЦИИ В РАСТВОРАХ ПЕРЕКИСИ ВОДОРОДА 1997
  • Гуськов В.А.
  • Мурина А.Ф.
  • Якушева И.П.
  • Островский В.И.
  • Тютиков М.В.
  • Сергеев Э.М.
RU2135636C1
СПОСОБ ПОВЫШЕНИЯ ИЗЛУЧАТЕЛЬНОЙ СПОСОБНОСТИ НЕРЖАВЕЮЩИХ СТАЛЕЙ 1992
  • Лисочкин Г.А.
  • Оглоблин Б.Г.
RU2054049C1
ТРУБА ИЗ НЕРЖАВЕЮЩЕЙ АУСТЕНИТНОЙ СТАЛИ С ОТЛИЧНОЙ СТОЙКОСТЬЮ К ОКИСЛЕНИЮ ПАРОМ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2011
  • Нисияма, Йоситака
  • Йосидзава, Мицуру
  • Сето, Масахиро
  • Танака, Кацуки
RU2511158C2
US 7749337 B2, 06.07.2010
WO 2011089431 A1, 28.07.2011.

RU 2 584 361 C1

Авторы

Булавкин Сергей Викторович

Даты

2016-05-20Публикация

2014-10-31Подача