ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ Российский патент 2006 года по МПК B22D7/00 

Описание патента на изобретение RU2289493C1

Изобретение относится к черной металлургии, в частности к утеплению поверхности жидкой стали и чугуна в ковше во время разливки или транспортировки.

Известна теплоизолирующая смесь для разливки стали (Авт. свид. СССР №582054, МПК В 22 D 27/00, B 22 D 7/10, опубл. в БИ №44, 1977 г.). Смесь содержит углеродсодержащее вещество, в качестве которого используются древесные опилки, а также перлит вспученный. Опилки - отход деревообработки, перлит - силикатная составляющая вулканического стекла. Его вспучивание происходит при нагревании за счет удаления из его состава химически связанной воды. Вспученный перлит является теплоизолирующим материалом и в смеси с опилками за счет их горения обеспечивает теплоизоляцию поверхности стали.

Однако эта теплоизолирующая смесь имеет следующий недостаток:

- после полного сгорания опилок, что происходит в течение нескольких минут, теплоизолирующие свойства смеси резко снижаются, оставшийся в смеси вспученный перлит благодаря контакту с расплавленной сталью расплавляется и теряет свои теплоизолирующие свойства.

По этой причине такая смесь не может быть использована для теплоизоляции поверхности жидкой стали или чугуна в ковше при разливке или транспортировке, где необходимо поддерживать высокую температуру расплавленного металла в течение длительного времени.

Известна также смесь для теплоизоляции металла при разливке стали (Авт. свид. СССР №833367, МПК B 22 D 7/10, опубл. в БИ №20, 1981 г.). Смесь также содержит углеродсодержащую добавку и вспученный перлит. В качестве углеродсодержащей добавки смесь содержит графит аморфный и термоантрацит. Причем размер зерна термоантрацита составляет 0,2-0,4 части от величины зерна вспученного перлита, что обеспечивает равномерное распределение в смеси термоантрацита.

Благодаря использованию в качестве углеродсодержащей добавки графита и термоантрацита их горение происходит медленнее по сравнению, например, с опилками, а выделяющиеся при горении газы предохраняют перлит от расплавления и поддерживают его во вспученном состоянии на протяжении всего периода горения.

Таким образом, теплоизолирующие свойства смеси поддерживаются в течение всего периода горения смеси. Причем продолжительность этого периода недостаточна для времени от наполнения ковша и до его разливки и транспортировки.

Это является одним из недостатков теплоизолирующей смеси.

Другим недостатком смеси является дефицитность графита аморфного и термоантрацита. Кроме того, при использовании смеси выделение летучих и продуктов горения загрязняет воздушную атмосферу, особенно за счет горения термоантрацита.

Технической задачей изобретения является обеспечение требуемых теплоизолирующих свойств смеси на период от начала разливки и до окончания транспортировки ковша при исключении выхода летучих и снижение выхода продуктов горения в атмосферу.

Поставленная задача решается тем, что теплоизолирующая смесь включает углеродистую и силикатную составляющие и алюминиевый порошок. В качестве силикатной составляющей используют разновидность полевого шпата - амазонит, а в качестве углеродистой составляющей - молотый кокс, при следующем соотношении компонентов, мас.%:

Полевой шпат (амазонит)65-70Кокс молотый20-25Алюминиевый порошок9-11

При этом размер фракции смеси составляет не более 3 мм при следующем соотношении фракций, мас.%:

Фракция 3-2 мм1-5Фракция 2-1 мм88-95Фракция 1-0,1 мм5-6

В состав теплоизолирующей смеси входят следующие компоненты: полевой шпат (амазонит), кокс молотый и алюминиевый порошок.

Их назначение в смеси заключается в следующем.

Полевой шпат является сырьем для производства силикатных расплавов, в частности различных видов стекла.

В состав полевого шпата входят: SiO2, AlO3, К2O, Na2O и Fe2O3.

Как показывает практика, для получения вязкости с возможностью образования пористой структуры необходимо содержание К2O и Na2O в пределах 8,5÷10,2%, что обеспечивается содержанием полевого шпата (амазонита) в пределах 65-70%.

При содержании в смеси полевого шпата-амазонита меньше 65% вязкость расплава высокая, что приводит к неравномерному растеканию смеси по всей поверхности, и что, препятствует образованию пористой структуры смеси, а значит, приводит к снижению ее теплоизолирующей способности.

При содержании же в смеси полевого шпата-амазонита более 70% вязкость расплава слишком низкая, что приведет к устранению пор, а следовательно, и к снижению теплоизолирующей способности.

Таким образом, оптимальными пределами содержания в смеси полевого шпата-амазонита являются пределы 65-70 мас.%.

Кокс является главным горючим материалом в доменном и сталеплавильном производствах, а также углеродсодержащим компонентом многих теплоизолирующих материалов в металлургии.

Преимуществом кокса по сравнению с другими углеродсодержащими добавками, например древесными опилками и каменным углем, является то, что в процессе его горения при использовании в теплоизолирующих смесях не выделяются летучие вещества, загрязняющие воздушную среду.

Его назначение в смеси - обеспечение теплоизолирующей способности до начала горения, а затем и предотвращение охлаждения металла в процессе горения.

При расходах кокса менее на 20% выделяемого тепла недостаточно для предотвращения охлаждения жидкого металла.

При расходах же его в смеси более 25% возможно расслоение смеси и потеря теплоизолирующей способности.

На основании изложенного оптимальные пределы содержания кокса в смеси составляют 20-25%.

Алюминиевый порошок является третьим компонентом теплоизолирующей смеси.

Алюминиевый порошок используется обычно в составе экзотермических шлакообразующих смесей, используемых в сталеплавильном производстве.

В состав теплоизолирующей смеси алюминиевый порошок вводится в качестве горючего экзотермических реакций. В качестве окислителя этой реакции служат оксиды железа, содержащиеся в полевом шпате (амазоните) и в золе кокса в результате его горения, а также оксиды железа, содержащиеся в неметаллических включениях расплава металла.

Содержание алюминиевого порошка в теплоизолирующей смеси принято в пределах 9-11 мас.%.

Как показывает практика, при содержании в смеси алюминиевого порошка менее 9% разогрев смеси за счет экзотермической реакции незначителен, и поэтому в процессе горения кокса и после его сгорания этого тепла будет недостаточно для предотвращения охлаждения жидкого металла.

При содержании же в смеси алюминиевого порошка в количестве более 11% возможен перегрев смеси, снижение теплоизолирующей способности. Кроме того, при таких расходах алюминиевого порошка возможен интенсивный разгар огнеупорной футеровки сталеразливочного ковша в зоне горловины (в зоне шлакового пояса). Поэтому оптимальным содержанием алюминиевого порошка в смеси является содержание 9-11%.

Для обеспечения сыпучести заявляемой смеси размер фракции ее должен находиться в пределах 0,1-3 мм.

При размере фракции компонентов смеси менее 0,1 мм возможно агрегатирование частиц в крупные гранулы при равновесной влажности смеси около 2%, что не обеспечивает равномерное рассыпание смеси.

При размере фракции смеси крупнее 3 мм возможно расслоение смеси, что приводит к ее неравномерному распределению по поверхности расплава металла.

Содержание в смеси фракции 3-2 мм менее 1% приводит к повышению ее плотности, слеживаемости и снижению ее сыпучести.

В смеси с содержанием фракции 3-2 мм более 5% пористость смеси повышается, однако наблюдается неравномерность распределения алюминиевого порошка, что приводит к замедлению протекания экзотермической реакции.

При содержании фракции 2-1 мм в смеси менее 88% также повышается ее пористость, приводящая к неравномерности распределения алюминиевого порошка, что также приводит к замедлению протекания экзотермической реакции.

Содержание фракции 2-1 мм в смеси более 95% приводит к повышению плотности смеси и плохому перемешиванию с другими компонентами и особенно с молотым коксом, что снижает теплоизолирующие свойства смеси.

При содержании в смеси фракции 1-0,1 мм менее 5% повышается пористость смеси, что приводит к ухудшению перемешивания смеси с коксом и алюминиевым порошком, что также снижает качество смеси.

Содержание в смеси фракции 1-0,1 мм более 6% приводит к повышению плотности смеси, что также снижает ее качество.

Пример конкретного выполнения

В сталеплавильном цехе ОАО "Магнитогорский металлургический комбинат" провели опыты по использованию теплоизолирующих смесей в сталеразливочных ковшах номинальной емкостью 175 тонн при выплавке стали марки Ст3сп. Провели 18 плавок - плавки №93777÷93794.

В опытах использовали теплоизолирующую смесь в соответствии с прототипом и заявляемую смесь.

В составе заявленной смеси использовали следующие материалы:

- кокс сухой молотый по СТП 101-68-98;

- полевой шпат (амазонит) Вишневогорского месторождения по ТУ 5726-96;

- алюминиевый порошок вторичный пассированный марки АПВ-П по ТУ 1790-99.

В опытах использовали следующие составы смесей:

Таблица№ составаСодержание компонентов, мас.%Полевой шпатКокс молотыйАлюминиевый порошок165251026722113702010

Получены следующие результаты: перепад температуры при разливке в машинах непрерывного литья заготовок (МНЛЗ) составил при использовании теплоизолирующей смеси по прототипу 14,7°С, заявляемой теплоизолирующей смеси (составы 1, 2, 3) - 12°С, что ниже на 23%.

Похожие патенты RU2289493C1

название год авторы номер документа
ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ 2008
  • Осипов Владимир Алексеевич
  • Валуев Алексей Георгиевич
  • Артюшин Владимир Александрович
  • Хоменко Александр Андреевич
  • Босякова Надежда Александровна
  • Степанова Элина Валентиновна
  • Сидоров Евгений Валерьевич
  • Николаев Олег Анатольевич
  • Синицких Роман Анатольевич
RU2370340C1
ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ 2008
  • Курбацкий Михаил Никитович
  • Хоменко Александр Андреевич
  • Петров Леонид Викторович
  • Хоменко Нэля Рудольфовна
RU2387520C2
ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ 2008
  • Курбацкий Михаил Никитович
  • Хоменко Александр Андреевич
  • Петров Леонид Викторович
  • Сарычев Александр Валентинович
  • Вдовин Константин Николаевич
  • Тарасов Анатолий Федорович
  • Точилкин Виктор Васильевич
RU2369463C1
ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ 2008
  • Курбацкий Михаил Никитович
  • Петров Леонид Викторович
  • Хоменко Александр Андреевич
  • Хоменко Нэля Рудольфовна
RU2384386C1
ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ 2008
  • Курбацкий Михаил Никитович
  • Петров Леонид Викторович
  • Тарасов Анатолий Федорович
  • Сарычев Александр Валентинович
  • Хоменко Александр Андреевич
  • Хоменко Нэля Рудольфовна
RU2377094C2
ШЛАКООБРАЗУЮЩАЯ СМЕСЬ 2008
  • Курбацкий Михаил Никитович
  • Хоменко Александр Андреевич
  • Петров Леонид Викторович
  • Сарычев Александр Валентинович
  • Вдовин Константин Николаевич
  • Хоменко Нэля Рудольфовна
  • Точилкин Виктор Васильевич
RU2366535C1
СМЕСЬ ДЛЯ ЗАПОЛНЕНИЯ ВЫПУСКНОГО КАНАЛА СТАЛЕРАЗЛИВОЧНОГО КОВША 2007
  • Бахчеев Николай Федорович
  • Сарычев Александр Валентинович
  • Хоменко Александр Андреевич
  • Курбацкий Михаил Никитович
  • Кунгурцев Владимир Николаевич
RU2355512C2
Экзотермическая смесь для утепления головной части слитка при разливке сталей и сплавов 2022
  • Леушин Игорь Олегович
  • Грачев Александр Николаевич
  • Рябцев Анатолий Данилович
  • Гарченко Александр Александрович
  • Леушина Любовь Игоревна
RU2773977C1
Экзотермическая смесь для утепления головной части слитка 1975
  • Коновалов Рем Петрович
  • Шнееров Яков Аронович
  • Поляков Владимир Федорович
  • Негода Валентин Иванович
SU550236A1
Экзотермическая шлакообразующая смесь для разливки стали 1981
  • Носов Виктор Александрович
  • Шиленко Борис Петрович
  • Семененко Петр Пименович
SU1031638A1

Реферат патента 2006 года ТЕПЛОИЗОЛИРУЮЩАЯ СМЕСЬ

Изобретение относится к черной металлургии, в частности к утеплению поверхности жидкой стали и чугуна в ковше во время разливки или транспортировки. Смесь содержит, мас.%: полевой шпат-амазонит 65-70, кокс молотый 20-25, алюминиевый порошок 9-11. Размер фракции смеси составляет не более 3 мм, при следующем соотношении фракций, мас.%: фракция 3-2 мм 1-5, фракция 2-1 мм 88-95, фракция 1-0,1 мм 5-6. Технический результат: обеспечение требуемых теплоизолирующих свойств смеси на период от начала разливки и до окончания транспортировки ковша при исключении выхода летучих и снижения выхода продуктов горения в атмосферу. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 289 493 C1

1. Теплоизолирующая смесь, включающая углеродистую и силикатную составляющие, алюминиевый порошок, отличающаяся тем, что в качестве силикатной составляющей она содержит разновидность полевого шпата - амазонит, а в качестве углеродистой составляющей - молотый кокс при следующем соотношении компонентов, мас.%:

Полевой шпат - амазонит65-70Кокс молотый20-25Алюминиевый порошок9-11

2. Смесь по п.1, отличающаяся тем, что размер фракции смеси составляет не более 3 мм при следующем соотношении фракций, мас.%:

3-2 мм1-52-1 мм88-951-0,1 мм5-6

Документы, цитированные в отчете о поиске Патент 2006 года RU2289493C1

ТЕПЛОИЗОЛИРУЮЩАЯ СЛ\ЕСЬ, ИСПОЛЬЗУЕМАЯ ПРИ РАЗЛИВКЕ СТАЛИ 0
  • Иностранцы Такахо Кавава, Нобуро Симада, Масадзи Коги Хидетаро Нем Ото
  • Иностранна Фирма
  • Ниппон Кокан Кабусики Кайса
SU342323A1
Смесь для теплоизоляции зеркалаМЕТАллА пРи РАзлиВКЕ СТАли 1979
  • Радько Юлия Федотовна
  • Рабинович Александр Гаврилович
  • Хмиров Владимир Иванович
  • Бут Виктор Павлович
SU833367A1
Шлакообразующая смесь 1988
  • Шабловский Валентин Алексеевич
  • Мелентьев Владимир Лонгинович
  • Олекса Роман Павлович
  • Грищенкова Софья Моисеевна
  • Житник Георгий Гаврилович
  • Носач Сергей Николаевич
  • Домарев Игорь Владимирович
  • Ильин Александр Викторович
  • Дрозд Владимир Иванович
  • Потапов Геннадий Анатольевич
SU1768348A1

RU 2 289 493 C1

Авторы

Тарасов Анатолий Федорович

Курбацкий Михаил Никитович

Сарычев Александр Валентинович

Осипов Владимир Алексеевич

Кунгурцев Владимир Николаевич

Бахчеев Николай Федорович

Хоменко Александр Андреевич

Казаков Сергей Иванович

Даты

2006-12-20Публикация

2005-06-20Подача