Изобретение относится к области водоочистки, а именно к способам водоподготовки с использованием фильтровальных модулей, содержащих для умягчения воды ионообменные смолы (ИС).
В настоящее время в технологических схемах умягчения воды для нужд потребителей в энергетике, а также для теплофикационных котельных широко используют различные фильтрационные процессы, в ходе которых очищаемую воду пропускают через один или несколько фильтровальных модулей, содержащих ионообменные смолы (Справочник химика-энергетика / под ред. Гурвича С.М.: В 3-х т., М.: Энергия, 1972, т.1, 455 с.; СНиП.2.04.02-84. Водоснабжение. Наружные сети и сооружения // Госстрой СССР. - Введ. 01.01.85). Выбор как метода очистки, так и технологии фильтрации и регенерации во многом определяется требованиями к получаемому фильтрату и характеристиками очищаемой воды.
Так, известен способ водоочистки, включающий в себя пропускание очищаемой воды сверху вниз через слой ИС, взрыхление отработанных ИС, их обработку регенерационным раствором снизу вверх и отмывку водой сверху вниз (Пат. РФ №2058817, 1995, кл. С02Р 1/42).
Недостатком указанного способа является низкая эффективность процесса регенерации вследствие большого расхода регенерационных растворов и значительного объема получаемых сточных вод, а также увеличенное время процесса регенерации смолы.
Наиболее близким по технической сущности к заявляемому способу является технология водоподготовки с помощью процесса фильтрования типа "UPCORE" ("The UPCORE System", Engineering Handbook, Trademark of The Dow Chemical Company, May 1995, A1 page 5, 6, B2 page 21), реализуемого путем пропускания очищаемой воды в фильтровальной установке через слой плавающего химически инертного в условиях осуществляемого процесса материала (инерт) и ионообменную смолу (ионит) в направлении сверху вниз.
Регенерацию смолы проводят следующим образом. По завершении рабочего цикла фильтрации проводят операцию поршнеобразного подъема и прижатия слоя ионита к плавающему в верхней части корпуса фильтра инерту восходящим потоком воды, после чего подают регенерирующий раствор (регенерант) в направлении снизу вверх с расходом, обеспечивающим сохранение слоя ионита в зажатом состоянии, затем проводят вытеснение остатков регенеранта восходящим потоком воды без разуплотнения зажатого слоя ионита, после чего позволяют слою смолы осесть под воздействием силы тяжести и проводят промывку водой в направлении, совпадающем с направлением потока обрабатываемой воды в рабочем цикле. При этом обеспечивается степень зажатия слоя ионита в пределах от 90 до 92%, для чего требуется подавать поток воды с линейной скоростью до 50 м/час не менее 3-5 минут, а для регенерации смолы подают регенерант в течение до одного часа с линейной скоростью потока до 20 м/час для поддержания слоя смолы в зажатом состоянии.
Основными недостатками способа для процесса умягчения являются увеличенный расход регенерирующего агента из-за неполного зажатия слоя (до 10% объема слоя смолы в нижней части аппарата остается в незажатом состоянии) и сложность удаления загрязнений в виде дисперсных взвесей, поступивших на ионообменную смолу с обрабатываемой водой.
Задачей, решаемой авторами, являлась разработка технологии, позволяющей обеспечить высокую эффективность очистки воды при одновременном снижении удельного расхода соли на регенерацию и сокращении потребления воды на собственные нужды.
Указанная задача решалась путем модификации процесса умягчения, применяемого в технологии "UPCORE". Предлагаемый способ отличается тем, что фильтрование проводят в фильтровальном комплексе, содержащем не менее чем два последовательно размещенных фильтра, при этом загрузка ионообменной смолы подбирается таким образом, чтобы объем смолы в первом фильтре составлял не более 40% от общего количества смолы, используемой для очистки, а зажатие смолы при регенерации осуществляют таким образом, что в первом фильтре оно проходит через стадию образования псевдоожиженного слоя.
В результате разделения процесса фильтрации на две и более стадий удается выделить для отдельной регенерации слой смолы, наиболее загрязняемый взвесями в процессе очистки. При этом появляется возможность проводить его регенерацию в более интенсивном режиме, т.к. структура последующих слоев смолы (находящихся в следующем фильтре) сохраняется в зажатом состоянии, что обеспечивает на следующих этапах в совокупности двух и более фильтров гарантию наличия условий, необходимых для оптимального проведения ионообменных процессов. Как правило, процесс проводят в двух фильтрах, однако возможно описанную технологию осуществлять и в большем количестве аппаратов с созданием в каждом из них отдельных условий регенерации смолы.
Использование в первом фильтре более 40% от общего количества смолы усложняет задачу удаления взвешенных веществ, накопившихся в слое смолы в процессе работы, приводя к необходимости увеличения затрат воды на отмывку и времени на проведение процесса. Конкретное количество смолы, загружаемое в первый фильтр, определяется особенностями примесей, содержащихся в воде, маркой смолы и требованиями к качеству очищенной воды.
Введение перед зажатием слоя перевода смолы в псевдоожиженное состояние сопровождается интенсивным перемешиванием катионита, благодаря которому (в результате трения и интенсивных столкновений зерен катионита между собой и со стенками фильтра) обеспечивается дополнительная очистка слоя от накопившихся в процессе рабочего цикла механических загрязнений.
Псевдоожиженное состояние смолы возникает, например, за счет того, что в ходе зажатия слоя смолы на время ее подъема скорость потока в первом фильтре по крайней мере на 25% ниже, чем скорость потока, требующаяся для поршнеобразного подъема смолы, или, что более оптимально, за счет подачи жидкости в первый фильтр в импульсном режиме, или за счет того, что в ходе зажатия слоя смолы на время ее подъема в первом фильтре подъем смолы проводят одновременно с барботажем через нее газа (воздуха или инертного газа), или за счет применения импульсных режимов подачи несущей среды. Барботаж газа через второй фильтр может проводиться только по завершении операции по подъему и зажатию слоя катионита, а через первый фильтр - в любое время до начала подачи регенеранта.
Зажатие слоев смолы осуществляется либо подачей потока жидкости в направлении снизу вверх последовательно от выхода последнего фильтра ко входу первого фильтра, входящих в фильтровальный комплекс, причем зажатие смолы во всех фильтрах, кроме первого, осуществляют в режиме поршнеобразного подъема (например, за счет отвода части потока из трубопровода между первым и вторым фильтрами в обход первого фильтра), либо тем, что зажатие смолы в первом фильтре проводят независимо от потоков жидкости, осуществляющих зажатие смолы в других фильтрах фильтровального комплекса.
Заявляемый способ может быть реализован практически с любыми типами ионообменных смол при условии правильного выбора плавающего инерта, однако лучшие результаты достигаются при применении в качестве ИС таких марок, как Ультраион К, СК, Кс, Км, а также DOWEX МАС-3, Marathon С, UPCORE Mono C-600, Monosphere 650 С.
Для достижения оптимальных результатов рекомендуется применять с указанными выше катионитами DOWEX UPCORE IF-62 в качестве инертного материала.
Благодаря использованию заявляемого способа удается добиться того, что удельный расход соли на регенерацию снижается на 10-15%, а потребление воды на собственные нужды уменьшается на 15-30%.
Сущность заявляемого изобретения иллюстрируется следующими примерами.
Пример 1. Пилотная установка представляла собой два последовательно установленных фильтра диаметром 0,2 м и высотой цилиндрической части 2 м. В каждый из фильтров был загружен плавающий инерт Dowex UPCORE IF-62 с высотой слоя загрузки 0,2 м и сильнокислотный катионит Dowex UP-CORE Mono C-600 (Na). В первом по ходу обрабатываемой воды фильтре высота слоя катионита составляла 1 м, а во втором - 1,75 м. В рабочем цикле обрабатываемая вода проходила в направлении сверху вниз последовательно сначала через первый фильтр, а затем - через второй. (Далее по тексту нумерация фильтров сохранена в соответствии с их расположением по ходу обрабатываемой воды в рабочем цикле.)
Жесткость исходной воды, подаваемой на обработку с линейной скоростью 30 м/ч, составляла 3-3,5 мг-экв/л; количество взвешенных веществ - нерастворимых высокодисперсных (<50 мкм) взвесей - 15-20 мг/л.
Регенерацию смолы проводили при достижении перепада давления между входом и выходом из установки значения 6 атм или при превышении величины жесткости в умягченной воде значения 10 мкг-экв/л.
Поток воды на зажатие слоя подавался с расходом 1 м3/ч в направлении снизу вверх в течение 5 мин сначала во второй фильтр, поднимая поршнеобразным движением слой катионита и прижимая его снизу к слою плавающего инерта. Выходящий из второго фильтра поток воды делился на два потока, один из которых со скоростью 0,7 м3/ч подавался снизу вверх в первый фильтр. В результате слой катионита в первом фильтре сначала расширяется, затем переходит в псевдоожиженное состояние и, наконец, под воздействием потока воды прижимается к слою плавающего инерта.
Переход в первом фильтре катионита в псевдоожиженное состояние сопровождается интенсивным перемешиванием катионита, благодаря которому обеспечивается очистка слоя от накопившихся в процессе рабочего цикла механических загрязнений. Затем расход несущего потока воды снижают до значения, при котором слои катионита в каждом фильтре сохраняются в зажатом состоянии (в рассматриваемом случае до 0,3 м3/ч), и подают регенерирующий агент (регенерант) - 8-10% раствор поваренной соли. Регенерант последовательно проходит в направлении снизу вверх сначала через второй фильтр, а затем - через первый.
По завершении подачи регенеранта проводят операцию по вытеснению его остатков из ионита, для чего в том же направлении и с тем же расходом пропускают умягченную воду в количестве, кратном 3 объемам слоя суммарной загрузки катионита. По завершении операции вытеснения регенеранта прекращают подачу воды в фильтры, позволяя слоям катионита в каждом фильтре осесть на дно. Затем осуществляют операцию быстрой промывки, при которой исходная вода с рабочей скоростью проходит последовательно в направлении сверху вниз сначала через первый фильтр, а затем - через второй. Количество воды, потребляемое на операцию быстрой промывки, составляет 3-кратный объем от суммарного объема катионита в обоих фильтрах.
Результаты реализации способа приведены в таблице 1.
Пример 2. В условиях примера 1 были проведены опыты по результатам регенерации при различных долях ионообменной смолы от общего количества, загруженных в первый фильтр. Полученные результаты приведены в таблице 1.
Пример 3. В условиях примера 1 были проведены опыты по результатам регенерации при различных скоростях подачи воды и газа (воздуха) для зажатия слоя первого фильтра. Полученные результаты приведены в таблице 1.
Пример 4. В условиях примера 1 были проведены опыты по зажатию слоя, при которых вода для зажатия слоя подавалась двумя потоками в направлении снизу вверх в течение 5 мин раздельно в первый и второй фильтры и направлялась в дренаж после каждого из них. При этом расход потока воды, подаваемого в первый фильтр, составил 0,7 м3/ч, расход потока воды, подаваемого во второй фильтр - 1 м3/ч. Во втором фильтре слой катионита поднимался поршнеобразным движением и прижимался снизу к слою плавающего инерта, в первом фильтре слой катионита расширяется, затем переходит в псевдоожиженное состояние. При этом часть слоя катионита в первом фильтре прижимается снизу к плавающему инерту, а часть - продолжает пребывать в псевдоожиженном состоянии.
После зажатия слоя расход несущего потока воды, подаваемого во второй фильтр, снижали до 0,3 м3/ч (значения, при котором слой катионита сохраняется в зажатом состоянии), и начинают подавать последовательно в направлении снизу вверх сначала через второй фильтр, а затем - через первый 8-10% раствор поваренной соли. В тот момент, когда регенерирующий раствор начинал поступать в первый фильтр, подачу потока воды, предназначавшегося для зажатия слоя катионита в первом фильтре, прекращали.
По завершении подачи регенеранта проводили операцию по вытеснению его остатков из ионита, для чего в том же направлении и с тем же расходом пропускали умягченную воду в количестве, кратном 3 объемам слоя суммарной загрузки катионита.
По завершении операции вытеснения регенеранта прекращали подачу воды в фильтры, позволяя слоям катионита в каждом фильтре осесть на дно, затем осуществляли операцию быстрой промывки, при которой исходная вода с рабочей скоростью проходила последовательно в направлении сверху вниз сначала через первый фильтр, а затем - через второй. Количество воды, потребляемое на операцию быстрой промывки, составляло 3-кратный объем от суммарного объема катионита в обоих фильтрах.
Об эффективности процесса регенерации судили по значению проскока жесткости, обеспечиваемому в следующем за регенерацией рабочем цикле, а также по снижению значения перепада давления между входом и выходом из установки. Результаты приведены в таблице 1.
Полученные результаты показали, что при использовании заявляемого способа удается на 15-30% вдвое сократить расход воды для собственных нужд, повысить эффективность процессов очистки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕГЕНЕРАЦИ ИОНООБМЕННЫХ СМОЛ | 2013 |
|
RU2545279C1 |
СПОСОБ ПРОТИВОТОЧНОЙ РЕГЕНЕРАЦИИ ИОНИТОВ | 1999 |
|
RU2149685C1 |
СПОСОБ РЕГЕНЕРАЦИИ ИОНИТОВ | 2003 |
|
RU2241542C1 |
Способ получения обессоленной воды | 2023 |
|
RU2821450C1 |
СПОСОБ ИОНООБМЕННОЙ ОЧИСТКИ ВОДЫ, СОДЕРЖАЩЕЙ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА, С ПРОТИВОТОЧНОЙ РЕГЕНЕРАЦИЕЙ ИОНООБМЕННЫХ МАТЕРИАЛОВ | 2002 |
|
RU2205692C2 |
СПОСОБ РЕГЕНЕРАЦИИ ИОНООБМЕННЫХ СМОЛ | 1998 |
|
RU2144848C1 |
СПОСОБ ОЧИСТКИ ВОДЫ ОТ РАСТВОРЕННЫХ И НЕРАСТВОРЕННЫХ ПРИМЕСЕЙ | 2002 |
|
RU2206520C1 |
СПОСОБ РЕГЕНЕРАЦИИ ИОНИТА В ПРОТИВОТОЧНОМ ФИЛЬТРЕ | 2000 |
|
RU2185883C1 |
СПОСОБ РЕГЕНЕРАЦИИ СЛАБОКИСЛОТНЫХ КАРБОКСИЛЬНЫХ КАТИОНИТОВ | 2004 |
|
RU2257265C1 |
СПОСОБ РЕГЕНЕРАЦИИ СУЛЬФОКАТИОНИТА | 1991 |
|
RU2031853C1 |
Изобретение относится к области водоочистки и водоподготовки с использованием фильтровальных модулей, содержащих ионообменные смолы для умягчения воды. Способ водоподготовки с помощью процессов фильтрования включает пропускание очищаемой воды через слой плавающего инертного материала и ионообменную смолу в направлении сверху вниз и регенерацию ионообменной смолы путем зажатия ее слоя потоком жидкой среды, направленным снизу вверх, пропускание регенерирующего раствора, гравитационное осаждение смолы и ее отмывку от остатков регенерирующего раствора, причем фильтрование проводят через не менее чем два последовательно установленных фильтра, при этом загрузка ионообменной смолы подбирается таким образом, чтобы объем смолы в первом фильтре составлял не более 40% от общего количества смолы, используемой для очистки, а зажатие смолы при регенерации осуществляют так, что в первом фильтре оно проходит через стадию образования псевдоожиженного слоя. При зажатии слоя смолы на время ее подъема скорость потока в первом фильтре, по крайней мере, на 25% ниже, чем скорость потока, требующаяся для поршнеобразного подъема смолы, или за счет того, что жидкость в первый фильтр подают в импульсном режиме, или за счет того, что в ходе зажатия слоя смолы на время ее подъема в первом фильтре подъем смолы осуществляют одновременно с барботажем через нее газа. Способ обеспечивает высокую эффективность при сокращении расхода соли на регенерацию и потребляемой воды. 5 з.п. ф-лы, 1 табл.
Авторы
Даты
2007-05-10—Публикация
2005-08-10—Подача