Изобретение относится к области ракетно-космической техники.
Известны космические корабли с электроракетными двигателями (ЭРД), излучающие в космическое пространство для создания реактивной тяги поток высокоэнергичных частиц, как правило, положительных ионов или микрочастиц (см., например: О.Н.ФАВОРСКИЙ и др. Основы теории космических электрореактивных двигательных установок. «Высшая школа». М., 1970. С.16-17, 23, 25).
Недостатком таких кораблей является то, что весь запас вещества, излучаемого в космическое пространство для создания тяги, необходимо брать на корабль еще до его старта, отчего стартовая масса корабля увеличивается.
С целью преодоления этого недостатка в настоящем изобретении предлагается космический корабль с ЭРД, использующим для создания реактивной силы тяги вещество в форме плазмы (с достаточно высокой плотностью свободных электронов), находящейся (и/или специально создаваемой) в самом космическом пространстве.
Указанная цель достигается тем, что в предлагаемом космическом корабле с ЭРД, состоящем из корпуса корабля, энергетической установки и устройства, создающего направленный поток заряженных частиц, указанный поток заряженных частиц состоит из высокоэнергичных электронов, излучаемых электронной пушкой, а вокруг корпуса корабля выполнен легкий электропроводящий зонт.
В предпочтительном варианте отверстие в аноде электронной пушки, предназначенное для выхода высокоэнергичных электронов, может быть закрыто шторкой, легко пропускающей высокоэнергичные электроны из электронной пушки и не пропускающей низкоэнергичные молекулы газа внутрь электронной пушки.
Электронная пушка может быть выполнена с несколькими анодами, расположенными вдоль движения потока электронов и создающими бегущую волну при относительно низком переменном напряжении на них.
Электронная пушка может быть снабжена отклоняющей системой, изменяющей направление потока электронов, или на корабле может использоваться несколько электронных пушек, меняющих под действием управляющего сигнала свою мощность.
Сущность изобретения иллюстрируется чертежом, на котором схематично изображен космический корабль в разрезе.
Космический корабль состоит из корпуса корабля 1, энергетической установки 2, электронной пушки 3 и легкого электропроводного зонта 4.
При работе энергетической установки 2 корабля вырабатываются два напряжения: одно низкое для нагрева катода электронной пушки (или нескольких пушек) 3 и второе высокое для ускорения электронов в межэлектродном пространстве электронной пушки (пушек).
Ускоренные до высоких энергий электроны 5 через отверстие в аноде (анодах) одной или более электронных пушек излучаются в космическое пространство, создавая реактивную тягу.
Корпус корабля 1 при этом получает положительный заряд, который распределяется по поверхности зонта 4. Этот заряд в необходимой степени нейтрализуется внешними электронами 6.
Кроме того, поток высокоэнергичных электронов 5, излучаемый электронной пушкой в направлении, противоположном движению корабля, проходя через нейтральное разреженное вещество космического пространства, ионизирует его, превращая в плазму 7. Часть электронов 8 этой плазмы может оседать на зонте 4, участвуя в его нейтрализации.
Положительные ионы плазмы 7 будут испытывать отталкивание от поверхности зонта 4, создавая при определенных условиях дополнительную реактивную тягу.
Управление тягой ЭРД производится отклоняющей системой электронной пушки (на чертеже не показана) или путем дифференциального изменения мощности нескольких электронных пушек, установленных на корабле.
название | год | авторы | номер документа |
---|---|---|---|
Мембранный ионно-плазменный ракетный двигатель космического аппарата | 2018 |
|
RU2709231C1 |
КОСМИЧЕСКИЙ МУСОРОСБОРЩИК | 2021 |
|
RU2772496C1 |
Прямоточный релятивистский двигатель | 2020 |
|
RU2776324C1 |
АВИАКОСМИЧЕСКИЕ ДВИГАТЕЛИ ДЛЯ КОСМИЧЕСКИХ САМОЛЕТОВ | 1997 |
|
RU2140014C1 |
Ионный ракетный двигатель космического аппарата | 2018 |
|
RU2682962C1 |
ЭЛЕКТРОРАКЕТНЫЙ ДВИГАТЕЛЬ БОГДАНОВА | 1992 |
|
RU2046210C1 |
СПОСОБ ИЗМЕРЕНИЯ УГЛОВЫХ И ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПОТОКА ТЯЖЕЛЫХ ЧАСТИЦ ФАКЕЛА ЭЛЕКТРОРАКЕТНОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2388934C2 |
ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) | 2019 |
|
RU2726152C1 |
Космический аппарат для очистки околоземного космического пространства от космического мусора | 2022 |
|
RU2784740C1 |
СПОСОБ СОЗДАНИЯ РЕАКТИВНОЙ ТЯГИ И РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 1997 |
|
RU2169854C2 |
Изобретение относится к области ракетно-космической техники. Предлагаемый космический корабль (КК) состоит из корпуса, энергетической установки и устройства, создающего направленный поток заряженных частиц в виде высокоэнергичных электронов, излучаемых электронной пушкой. Вокруг корпуса КК выполнен легкий электропроводящий зонт. Предусмотрены модификации электронной пушки. Возможна установка на КК нескольких управляемых электронных пушек. При работе устройства ускоренные до высоких энергий электроны через отверстие в аноде электронной пушки (пушек) излучаются в космическое пространство, создавая реактивную тягу. Корпус КК при этом получает положительный заряд, который распределяется по поверхности зонта. Этот заряд в необходимой степени нейтрализуется внешними электронами. Технический результат изобретения состоит в создании КК с электроракетным двигателем, использующим для создания реактивной силы тяги вещество в форме плазмы, находящейся (и/или специально создаваемой) в самом космическом пространстве. 3 з.п. ф-лы, 1 ил.
О.Н.ФАВОРСКИЙ и др | |||
Основы теории космических электрореактивных двигательных установок | |||
«Высшая школа», М., 1970, С.16-17, 23, 25 | |||
ДИНАМИЧЕСКАЯ ТРОСОВАЯ СИСТЕМА ПРЕИМУЩЕСТВЕННО ДЛЯ ЭЛЕКТРО- И РАДИОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ ОКОЛОЗЕМНОЙ СРЕДЫ | 1996 |
|
RU2104231C1 |
Ускоритель электронов | 1975 |
|
SU544331A1 |
Ускоритель заряженных частиц | 1981 |
|
SU995692A1 |
ОБЪЕДИНЕННАЯ ЭЛЕКТРОРЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА, СПОСОБ СОЗДАНИЯ УПРАВЛЯЮЩИХ МОМЕНТОВ ПО КАНАЛАМ ТАНГАЖА И РЫСКАНИЯ КОСМИЧЕСКОГО АППАРАТА С УКАЗАННОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ И ТРЕХКАНАЛЬНЫЙ ЭЛЕКТРОРЕАКТИВНЫЙ ДВИГАТЕЛЬ | 1992 |
|
RU2040445C1 |
Авторы
Даты
2007-08-10—Публикация
2001-08-17—Подача