ФЕРРОАЛЮМИНИЙ ДЛЯ РАСКИСЛЕНИЯ СТАЛИ В ВИДЕ КУСКОВ Российский патент 2007 года по МПК C22C35/00 

Описание патента на изобретение RU2310006C2

Изобретение относится к черной металлургии и может быть использовано для получения ферроалюминия для раскисления стали в виде кусков размером 40-80 мм и плотностью 5.0-7.0 г/см3.

Известны сплавы ФА10-ФА23 для раскисления и легирования стали (ЧМТУ 5-37-71. М.И.Гасик, Б.И.Емлин. Электрометаллургия ферросплавов. Киев: Высшая школа, 1983 - 376 с.), содержащие, мас.%:

Алюминий8,0-24КремнийДо 4УглеродДо 4ФосфорДо 0,06СераДо 0,06ЖелезоОстальное

Основным недостатком этих сплавов является низкое содержание алюминия, что сокращает область их применения и затрудняет процесс производства, а также ограничение по содержанию кремния, которое не позволяет использовать многочисленные дешевые шихтовые материалы, применяемые при выплавке алюминиевых сплавов.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является сплав (Патент РФ №2214473, МПК 7 С22С 35/00. Сплав для раскисления стали / Костарев В.Г., Почивалов О.В., Теляшов Н.В., Шешуков О.Ю. // Изобретения. 2003. №29 (II ч.). С.370) для получения стали, содержащий, мас.%:

Алюминий20-40Кремний0,5-20Марганец0,5-5Углерод0,1-0,9Медь0,2-2,0Фосфор0,02-0,1Сера0,02-0,1ЖелезоОстальное

Основным недостатком этих сплавов являются широкие пределы содержания алюминия, что не оправдано как с позиций получения, так и с позиций хранения и транспортировки получаемых сплавов. С другой стороны, широкие пределы по содержанию кремния и особенно высокое содержание кремния (до 20%), удорожает получение указанного сплава (невозможно получить сплав указанного состава без дополнительного введения ферросплавов типа ферросилиций) и ограничивает область его применения (невозможно применение при получении безкремнистых марок стали).

Техническим результатом заявляемого изобретения является улучшение служебных характеристик получаемого сплава (плотности, дробимости и механической прочности в течение длительного времени) с максимальным усвоением элементов за счет оптимального состава ферроалюминия, полученного в виде кусков размером 40-80 мм и плотностью 5.0-7.0 г/см3.

Указанный технический результат достигается тем, что ферроалюминий для раскисления стали в виде кусков размером 40-80 мм и плотностью 5,0-7,0 г/см3, содержащий алюминий, кремний, марганец, углерод, медь, фосфор, серу и железо, при следующем соотношении компонентов, мас.%:

Алюминий28-32Кремний0,5-5,0Марганец5,01-8,0Углерод0,1-0,9Медь0,2-2,0Фосфор0,02-0,1Сера0,02-0,1ЖелезоОстальное

Предлагаемый комплексный сплав отличается оптимальными пределами содержания алюминия. Во-первых, заявляемые пределы содержания алюминия определяют оптимальную плотность сплава, которая рекомендована в пределах 5,0-7,0 г/см3, обеспечивая погружение и витание сплава в жидкой стали с максимальным усвоением элементов; во-вторых, сплав, содержащий менее 28% алюминия, будет иметь повышенную механическую прочность, что затрудняет получение кусков в пределах 40-80 мм, что требуется для эффективного проведения процесса раскисления; в-третьих, сплав, содержащий более 32% алюминия, будет обладать повышенной склонностью к саморассыпанию, что затрудняет его траспортировку и использование для обработки стали.

Содержание в сплаве менее 0,5% кремния невозможно, так как в процессе плавки он переходит в сплав как из восстанавливаемого сырья, так и из металлодобавок. Концентрация кремния в сплаве до 5% практически не сказывается на физических свойствах сплава и процессе раскисления стали, а в случае повышения содержания кремния выше 5% наблюдается уменьшение плотности сплава ниже рекомендованного предела 5,0 г/см3, т.е. снижаются служебные характеристики получаемого сплава. Кроме того, более высокое содержание кремния в сплаве (более 5,0%) значительно усложняет технологию получения и повышает стоимость сплава за счет увеличения затрат на сырье (в этом случае обязательно необходимо использовать в шихте кремнистые ферросплавы типа ферросилиция).

Содержание в сплаве марганца в интервале 5,01-8,0% улучшает служебные характеристики получаемого сплава. Указанное содержание марганца получают за счет использования марганецсодержащего стального лома, что обеспечивает механическую прочность получаемого сплава в течение длительного времени, что не достигалось в прототипе.

Содержание в сплаве углерода от 0,1 до 0,9% зависит от его концентрации в исходных рудах, металлодобавках, восстановителях и степени перехода в сплав. Нижний и верхний пределы содержания этого элемента связаны с видом шихтовых материалов и не требуют дополнительного ввода материалов. При этом углерод в заявляемых пределах либо не влияет на процесс раскисления и свойства стали, либо оказывает положительное воздействие на процесс раскисления и удаление продуктов раскисления. Содержание углерода более 0,9% потребует дополнительных затрат на получение ферроалюминия, а еще более высокое содержание углерода может вызвать нежелательное увеличение его содержания в стали.

Наличие в стали серы и фосфора неизбежны в связи с их присутствием в любой руде и стальном ломе, а меди - в алюминийсодержащем ломе, применяемом при получении ферроалюминия методом сплавления. Нижний предел содержания меди (0,2%), серы и фосфора (0,02%) обусловлен содержанием этих элементов в сырье и степенью их перехода в сплав, а верхний предел ограничен вредным воздействием этих элементов на сталь и допустимыми их концентрациями по техническим условиям. При содержании серы, фосфора и меди в сплаве выше верхнего предела они внесут в сталь (при максимальном расходе сплава 1,5 кг/т) этих элементов соответственно 0,00015; 0,00015 и 0,003%, что не может не отразиться на ее составе и качестве.

Применение ферроалюминия для раскисления стали позволяет упростить ввод алюминия в жидкую сталь, снизить затраты на раскисление за счет увеличения полезного использования алюминия (кремния) до 60-90% при обычном вводе сплава из бункеров в ковш. Однако несоблюдение при получении ферроалюминия рекомендуемых пределов содержания алюминия и кремния, приводит к ухудшению служебных характеристик получаемого сплава и, как следствие, к нестабильным результатам при раскислении стали. Таким образом, использование для раскисления стали ферроалюминия, содержащего основные компоненты в заявляемых пределах, позволит стабилизировать результаты раскисления.

Изобретение иллюстрируется следующими примерами.

На ОАО «Курганмашзавод» проведены три компании по выплавке заявляемого сплава из металлоотходов стали и алюминия в индукционной печи ИЧТ-2,0.

В качестве стального лома применялась обрезь фасонного литья из стали марки Ст3 (со средним содержанием, %: 0,2 С; 0,6 Mn; 0,27 Si, до 0,04 Р и до 0,05 S) и стали марки 110Г13Л (со средним содержанием, %: 1,1 С; 13 Mn; 0,27 Si, до 0,04 Р и до 0,05 S). Алюминий использовали в виде брикетов и стружки, содержащих, %: не ниже 85 Al; 0,5 Mn; 1,5-8,0 Si.

Перемешанную металлошихту загружали в индукционную печь до полного заполнения и далее порциями по мере ее проплавления. Плавление велось под шлаком, образующимся в результате окисления примесей. Разливку металла производили из ковша в чугунные изложницы для получения равных по весу слитков. Температура металла на выпуске составляла 1320-1350°С.

Всего было проведено 20 опытных плавок.

Состав полученного металла находился в следующих пределах, %: 22,7-34,8 Al; 0,5-5,2 Si; 0,5-8,1 Mn; 0,03-0,08 С; содержание меди не превышало 0,2.

В таблице приведено несколько составов полученных сплавов (номера 1-9) и для сравнения составы сплавов по прототипу.

В условиях литейного цеха ОАО «Курганмашзавод» были выполнены опытные плавки стали Ст40 с раскислением ее сплавами, приведенными в таблице. Сталь выплавляли в печах ДСВ-6 и на выпуске в ковш на струю металла вводили ферроалюминий различного состава из расчета получения в стали содержания остаточного алюминия не ниже 0,02%. Результаты по технологическим свойствам ферроалюминия и полезному использованию алюминия приведены в таблице.

Результаты оценки технологических свойств показали, что содержание алюминия в сплаве должно быть в пределах 28-32%, кремния от 0,5 до 5%, а марганца 0,5-8,0%. Сплавы, содержащие алюминий ниже указанных пределов, обладали повышенной плотностью и твердостью, что затрудняло их применение в качестве раскислителя и не позволяло получать стабильные результаты. Сплавы, содержащие алюминий выше указанных пределов, хотя и отвечали требованиям по плотности и температуре плавления, однако были подвержены саморассыпанию.

Опыты по раскислению стали показали, что у сплава, содержащего ведущие элементы в соотвествии с прототипом более низкие технологические показатели и соответственно полезное использование алюминия. Наиболее пригоден для обработки стали сплав, содержащий компоненты в пределах, заявляемых о данном изобретении.

Практические результаты показали принципиальную возможность получения ферроалюминия с содержанием алюминия в среднем 30% из металлоотходов в индукционной печи, возможность его использования для эффективного раскисления стали при повышенном коэффициенте полезного использования алюминия и кремния предлагаемого сплава.

ТаблицаСостав комплексного ферроалюминия и его полезное использование при раскислении стали№ сплаваХимический состав, мас.%Плотность, г/м3ДробимостьСрок рассыпанияПолезное использование алюминия, %AlSiMnСРSFe128,04,20,80,060,0260,010ост.5,31удовл.не менее 3 месяцев83,2227,91,800,50,070,0090,009ост.5,56плохаяне менее 3 месяцев82,6330,10,60,70,040,0100,010ост.5,54удовл.не менее 3 месяцев87,3432,00,50,70,040,0100,010ост.5,30хорошаяне менее 3 месяцев86,5532,60,50,50,030,0100,010ост.5,42хорошая1 месяц86,2634,80,920,50,030,0120,005ост.5,37хорошая2 недели84,5722,75,00,60,080,0110,006ост.5,77не дробитсяне менее 3 месяцев74,7828,70,88,00,650,0100,007ост.6,01хорошаяне менее 3 месяцев84,7929,65,20,80,060,0120,010ост.4,86хорошаяне менее 3 месяцев76,4Прототип20,21,00,70,140,030,06ост.6,12не дробитсяне менее 3 месяцев70,839,40,840,50,80,050,04ост.4,53хорошая1 неделя64,330,215,40,50,60,050,06ост.4,66хорошаяне менее 3 месяцев67,9

Похожие патенты RU2310006C2

название год авторы номер документа
СПЛАВ ДЛЯ РАСКИСЛЕНИЯ СТАЛИ 2002
  • Костарев В.Г.
  • Почивалов О.В.
  • Теляшов Н.В.
  • Шешуков О.Ю.
RU2214473C1
СПОСОБ И ШИХТА ДЛЯ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ КОНСТРУКЦИОННОЙ СТАЛИ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ В ДУГОВОЙ СТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2012
  • Васин Евгений Александрович
  • Трофимов Сергей Александрович
RU2534715C2
СПЛАВ ДЛЯ РАСКИСЛЕНИЯ И ХИМИЧЕСКОЙ ЗАКУПОРКИ ЖИДКОЙ СТАЛИ 2006
  • Климанчук Владислав Владиславович
  • Ларионов Александр Алексеевич
  • Семенченко Петр Михайлович
  • Белов Борис Федорович
  • Троцан Анатолий Иванович
  • Паренчук Игорь Валерьевич
  • Шепель Виктор Данилович
  • Синельников Владимир Петрович
  • Ватлецов Александр Васильевич
  • Небога Борис Владимирович
  • Харлашин Петр Петрович
RU2336352C2
СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ПОЛУЧЕНИЯ СТАЛИ И ФЕРРОСПЛАВОВ 2000
  • Лекомцев Б.П.
  • Островский Я.И.
  • Кириченко Н.Ф.
  • Жучков В.И.
  • Мальцев Ю.Б.
  • Заякин О.В.
  • Вотяков А.Г.
  • Нарыжный В.Д.
  • Фадеев В.Г.
RU2184171C2
СПОСОБ ВЫПЛАВКИ ФЕРРОАЛЮМИНИЯ 2002
  • Костарев В.Г.
  • Почивалов О.В.
  • Теляшов Н.В.
  • Шешуков О.Ю.
RU2215809C1
СПОСОБ И ШИХТА ДЛЯ ПРОИЗВОДСТВА КОНСТРУКЦИОННОЙ СТАЛИ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ 2007
  • Карпов Анатолий Александрович
  • Филипьев Сергей Николаевич
  • Наумов Николай Викторович
  • Дьяконов Сергей Данилович
  • Васин Евгений Александрович
  • Щербаков Станислав Андреевич
RU2363736C2
СПОСОБ ВЫПЛАВКИ ФЕРРОАЛЮМИНИЯ 2003
  • Шаруда А.Н.
  • Веснин О.В.
  • Пискаев А.Е.
  • Кирьянов С.В.
RU2241777C1
Комплексный сплав для микролегирования и раскисления стали на основе железа 2022
  • Жучков Владимир Иванович
  • Заякин Олег Вадимович
  • Кель Илья Николаевич
  • Михайлова Людмила Юрьевна
  • Сычев Александр Владимирович
RU2795068C1
СПОСОБ ФОРМИРОВАНИЯ ЗАЩИТНОЙ ОБОЛОЧКИ НА ПОВЕРХНОСТИ РАСКИСЛИТЕЛЯ ЖИДКОЙ СТАЛИ 2007
  • Меркер Эдуард Эдгарович
  • Гришин Андрей Анатольевич
  • Стадничук Виктор Иванович
RU2351659C2
СПОСОБ ПРОИЗВОДСТВА В МАРТЕНОВСКОЙ ПЕЧИ КОНСТРУКЦИОННОЙ СТАЛИ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ 2000
  • Каменских А.А.
  • Карпов А.А.
  • Зеленов В.Н.
  • Марков В.М.
  • Сазухин А.И.
  • Шепеляковский К.З.
  • Решетников В.А.
  • Лобозов В.П.
RU2164536C1

Реферат патента 2007 года ФЕРРОАЛЮМИНИЙ ДЛЯ РАСКИСЛЕНИЯ СТАЛИ В ВИДЕ КУСКОВ

Изобретение относится к черной металлургии и может быть использовано для получения ферроалюминия для раскисления стали в виде кусков размером 40-80 мм и плотностью 5,0-7,0 г/см3. Сплав содержит компоненты при следующем соотношении, мас.%: алюминий 28-32, кремний 0,5-5,0, марганец 5, 01-8,0, углерод 0,1-0,9, медь 0,2-2,0, фосфор 0,02-0,1, сера 0,02-0,1, железо - остальное. Изобретение позволяет улучшить служебные характеристики сплава, а именно плотность, дробимость и механическую прочность в течение длительного времени с максимальным усвоением элементов за счет оптимального состава. 1 табл.

Формула изобретения RU 2 310 006 C2

Ферроалюминий для раскисления стали в виде кусков размером 40-80 мм и плотностью 5,0-7,0 г/см3, содержащий алюминий, кремний, марганец, углерод, медь, фосфор, серу и железо, при следующем соотношении компонентов, мас.%:

Алюминий28,0-32,0Кремний0,5-5,0Марганец5,01-8,0Углерод0,1-0,9Медь0,2-2,0Фосфор0,02-0,1Сера0,02-0,1ЖелезоОстальное

Документы, цитированные в отчете о поиске Патент 2007 года RU2310006C2

СПЛАВ ДЛЯ РАСКИСЛЕНИЯ СТАЛИ 2002
  • Костарев В.Г.
  • Почивалов О.В.
  • Теляшов Н.В.
  • Шешуков О.Ю.
RU2214473C1
Сплав для легирования и раскисления стали 1990
  • Звиададзе Гиви Николаевич
  • Кашакашвили Гурам Венедиктович
  • Микадзе Омар Шиоевич
  • Гвамберия Нодар Отарович
  • Гогичаишвили Борис Георгиевич
  • Шатиришвили Тамаз Александрович
  • Таругашвили Арджеван Сакулович
  • Бучукури Тамаз Иванович
SU1752812A1
US 5037609 A1, 06.08.1991.

RU 2 310 006 C2

Авторы

Шешуков Олег Юрьевич

Жучков Владимир Иванович

Леонтьев Леопольд Игоревич

Маршук Лариса Александровна

Даты

2007-11-10Публикация

2005-06-17Подача