Изобретение относится к нагнетательным установкам, работающим по принципу перемещения материалов в потоке воздуха, а именно к пневматическим камерным с верхней загрузкой и выгрузкой насосам для транспортировки порошкообразных и мелкозернистых материалов. Оно может быть использовано в производстве строительных материалов, черной и цветной металлургии, энергетической, химической и других отраслях для транспортировки цемента, порошкообразного угля золы, формовочных смесей, колосниковой пыли доменных печей, различных концентратов и т.п.
Известны пневматические насосы, в которых транспортируемый материал загружается в верхнюю часть камеры, и сжатый воздух также подается в верхнюю часть камеры. Разгрузка таких пневматических насосов осуществляется неэффективно из-за рассеивания тепловой энергии в самом транспортном трубопроводе, что приводит к формированию противодавления, которое препятствует разгрузке пневмокамерного насоса (см., например, справочник «Пневмотранспортное оборудование» под редакцией М.П.Калинушкина и др., Л.: Машиностроение, Ленинградское отделение, 1986).
Известен также пневматический насос ТА-28 (см. указанный справочник, стр.129-130, рис.6-9). Он содержит камеру с загрузочным клапаном для подачи трансформируемого материала и клапаном для выпуска воздуха, трубопровод для сжатого воздуха с клапаном для подачи сжатого воздуха в камеру и трубопровод для транспортировки материала. Недостатком его является то, что увеличивается противодавление в трубопроводе при смешении транспортируемого материала (например, цемента, имеющего обычно 140°С) и транспортируемого агента (сжатого воздуха с температурой 20°С). Это приводит к увеличению температуры сжатого воздуха внутри транспортного трубопровода и затрудняет разгрузку камеры известного насоса, а для улучшения последней требуется проведение дополнительной механической работы за счет увеличения количества (расхода) транспортирующего агента (сжатого воздуха).
Указанный недостаток в некоторой степени был устранен в техническом решении по патенту RU 2248928 (В65G 53/40, 27.03.2005), которое является наиболее близким к настоящему изобретению по технической сущности и достигаемому результату. Известный пневмокамерный насос для транспортировки порошкообразных и мелкозернистых материалов с их верхней загрузкой и выгрузкой включает камеру с загрузочным клапаном для подачи подлежащего транспортировке материала и клапаном для выпуска сжатого воздуха, аэрационное устройство и размещенные в камере пневматически связанные с аэрационным устройством трубопровод с входным клапаном для подачи сжатого воздуха, оснащенную дросселем трубу для транспортировки (выдачи из камеры) аэрированного материала и с открытым со стороны загрузочного клапана концом компенсационную трубу, имеющую изогнутый конец, на выходе которого размещено оснащенное рассеивателем для формирования турбулентной струи (турбулизатором воздушной струи) сопло, расположенное перед входом в трубу для транспортировки аэрированного материала. Аэрационное устройство имеет корпус кольцевого типа с полупроницаемой стенкой, обращенной в сторону открытого конца компенсационной трубы.
Недостатком известного пневмокамерного насоса является значительные потери в нем давления сжатого воздуха при его работе, которые обусловлены его конструктивными особенностями. Наличие изогнутого конца компенсационной трубы, представляющего местное сопротивление, обуславливает накопление в ней транспортируемого материала в процессе эксплуатации (за каждый рабочий цикл при загрузке материала в камеру он в виде пыли неизбежно проникает в компенсационную трубу через ее открытый верхний конец и оседает в ее изогнутой части). Это приводит к возрастанию гидравлического сопротивления. Кроме того, причиной, по которой происходит накопление транспортируемого материала в изогнутом конце компенсационной трубы, является противодавление среды в системе «сопло-рассеиватель» («сопло-турбулизатор»), что инициирует движение материала навстречу турбулентной струе из кольцевого зазора указанной системы. При этом его массоперенос достигает максимума в момент завершения цикла транспортировки материала пневмокамерным насосом, т.е. когда давление в камере резко падает. Как следствие вышеуказанного увеличивается расход сжатого воздуха при пониженной производительности пневмокамерного насоса, а значит возрастают издержки на транспортировку материала (абсолютные и удельные).
Задача изобретения состояла в создании такого пневмокамерного насоса для транспортировки порошкообразных и мелкозернистых материалов, который позволял бы устойчиво работать при пониженном давлении и пониженном удельном расходе траспортирующего агента (количестве кубических метров сжатого воздуха в пересчете на нормальные условия, отнесенные к тонне материала) за счет уменьшения сопротивления среды.
Для решения поставленной задачи с достижением указанного технического результата пневмокамерный насос для транспортировки порошкообразных и мелкозернистых материалов содержит камеру с загрузочным клапаном для подачи подлежащего транспортировке материала и клапаном для выпуска сжатого воздуха и размещенные в камере аэрационное усторойство, пневматически связанный с аэрационнным устройством трубопровод с входным клапаном для подачи сжатого воздуха, оснащенную дросселем трубу для выдачи из камеры аэрированного материала и с открытым со стороны загрузочного клапана концом компенсационную трубу, имеющую оснащенное турбулизатором воздушной струи сопло, расположенное перед входом в трубу для транспортировки аэрированного материала. Отличительной особенностью такого насоса является то, что его компенсационная труба снабжена форкамерой, которая размещена перед соплом и пневматически связана с трубопроводом для подачи сжатого воздуха через обратный клапан.
Для повышения эффективности удаления осадка из форкамеры выходное отверстие обратного клапана расположено в придонной или донной ее части.
Для уменьшения сопротивления среды дно форкамеры имеет криволинейную форму (цилиндрическую или в виде части горообразной поверхности).
Для уменьшения потерь давления воздуха при насыщении материала воздухом аэрационное устройство выполнено в виде мультисоплового аппарата.
Для повышения эффективности работы мультисоплового аппарата по крайней мере часть его сопел снабжена индивидуальными турбулизаторами.
Для создания полностью псевдоожиженного слоя материла в нижней части камеры корпус мультисоплового аппарата снабжен поэлементно усиливающими эффект средствами: ответвлениями, расположенными в разных радиальных плоскостях корпуса с охватом пространства между корпусом и трубой для выдачи аэрированного материала, имеющими радиальное или наклонное направление и расположенными в разных радиальных плоскостях; соплами, расположенными на корпусе, имеющими непродольную относительно камеры ориентацию с углом α их наклона в радиальных плоскостях к продольному направлению камеры в пределах 10°<α<160°; соплами, расположенными на ответвлениях и имеющими угловую направленность с углом β в поперечных плоскостях с отклонением от радиальной плоскости нахождения продольной оси ответвления в каждом из двух направлений в пределах для радиальных ответвлений ±5°≤β1≤±170°, а для наклонных ответвлений 0°≤β2≤±90°.
Для создания необходимой степени пседоожижения материала, находящегося в средней части камеры, мультисопловый аппарат снабжен дополнительными, например двумя, автономными частями с корпусами, имеющими радиальные ответвления и расположенными в одной или разных поперечных плоскостях камеры в ее средней части вокруг трубы для выдачи аэрированного материала.
Для эффективности работы (с поэтапным ее усилением) дополнительных частей мультисоплового аппарата радиальные ответвления их корпусов имеют одноименную или разноименную направленность к центральной оси камеры или к периферии последней, при этом сопла преимущественно ориентированы вдоль камеры, а по крайней мере часть периферийных сопел (корпусов и/или их наружных ответвлений) имеет близкую к тангенциальной ориентацию (угол γ отклонения от их касательных плоскостей в сторону продольной центральной оси камеры находится в пределах 5°<γ<15°).
Настоящее изобретение проиллюстрировано чертежами, где изображено:
на фиг.1 - пневмокамерный насос для транспортировки порошкообразных и мелкозернистых материалов, продольный разрез;
на фиг.2 - то же, продольный разрез его форкамеры;
на фиг.3 - то же, вид А на фиг.2;
на фиг.4 - то же, разрез Б-Б (модификация форкамеры с цилиндрическим дном);
на фиг.5 - то же, разрез Б-Б (модификация форкамеры с дном в виде части горообразной поверхности);
на фиг.6 - то же, продольный разрез (с выполнением аэрационного устройства в виде мультисоплового аппарата);
на фиг.7 - то же, разрез В-В на фиг.6;
на фиг.8 и 9 - то же, соответственно сечение Г-Г и Д-Д на фиг.7 (угловой диапазон ориентации сопел);
на фиг.10 - то же, продольный разрез (с модификацией мультисоплового аппарата в виде двух дополнительных кольцевых частей, корпуса которых имеют разные диаметры, размещены в разных поперечных плоскостях средней части камеры и снабжены противоположно ориентированными радиальными ответвлениями);
на фиг.11 и 12 - то же, часть вида дополнительных частей мультисоплового аппарата, имеющих разные диаметры, расположенных в одной поперечной плоскости и оснащенных соответственно радиальными ответвления одинаковой направленности (к центру) и частично различной;
на фиг.13 - то же, продольный разрез (с модификацией мультисоплового аппарата в виде двух дополнительных кольцевых частей, корпуса которых имеют разные диаметры, размещены в разных поперечных плоскостях средней части камеры и снабжены периферийными близкими к тангенциальной ориентации соплами, расположенными на наружных радиальных ответвлениях и на периферийном корпусе соответственно):
на фиг.14 - то же, периферийное сопло, продольный разрез;
на фиг.15 - то же, схема ориентации периферийного сопла в поперечной плоскости камеры.
Настоящее изобретение представляет собой пневмокамерный насос для транспортировки порошкообразных и мелкозернистых материалов с их верхней загрузкой и выгрузкой. Насос содержит камеру 1 (фиг.1) с загрузочным клапаном 2 для подачи подлежащего транспортировке материала и клапаном 3 для выпуска сжатого воздуха и размещенные в камере 1: аэрационное устройство 4, пневматически связанный с ним трубопровод 5 с входным клапаном 6 для подачи сжатого воздуха, оснащенную дросселем 7 трубу 8 для выдачи из камеры 1 аэрированного материала и с открытым со стороны загрузочного клапана 2 концом 9 компенсационную трубу 10, которая выполнена прямой и снабжена форкамерой 11, имеющей расположенное перед входом 12 в трубу 8 сопло 13 с турбулизатором 14 воздушной струи и пневматически связанной с трубопроводом 5 для подачи сжатого воздуха через обратный клапан 15.
Камера 1 может быть выполнена, например, с цилиндрической средней частью 16, сопряженной с торцевыми выполненными в виде усеченных конусов верхней 17 и нижней 18 частями. Форкамера 11 (фиг.2, 3 и 4) выполнена в виде короба с плоской верхней частью 19, плоскими боковинами 20 и дном 21. Дно 21 имеет криволинейную форму - цилиндрическую или в виде части горообразной поверхности 22 (фиг.4), которая может непосредственно примыкать к верхней части 19. Возможно выполнение короба с торцевыми стенками и примыканием к ним дна (не показано). К одному концу верхней части 19 приварена компенсационная труба 10, а к противоположному ее концу - корпус 23 сопла 13 с обеспечением их пневматической связи с полостью 24 форкамеры 11 (через выходное отверстие 10а и входное отверстие 13а соответственно трубы 10 и корпуса 23). Корпус 23 сопла 13 имеет по крайней мере внутреннюю коническую поверхность 25. Турбулизатор 14 выполнен в виде шара 26, размещенного в корпусе 23 сопла 13 с возможностью контакта с его поверхностью 25 и регулируемого вертикального перемещения с помощью винта 27, ввинченного в резьбовое отверстие 28 узкой пластины 29, перекрывающей центральную часть выходного отверстия 30 сопла 13 и приваренного к его корпусу 23. Винт 27 зафиксирован контргайкой 31. Обратный клапан 15 состоит из рабочего элемента 32 в виде шара, размещенного в цилиндрическом корпусе 33, седла 34 и ограничителя хода 35. Через свое входное отверстие 36 обратный клапан пневматически связан с трубопроводом 5 для подачи сжатого воздуха, а выходным отверстием 37 - с полостью 24 форкамеры 11, при этом выходное отверстие 37 расположено в криволинейном дне 21 форкамеы 11 со стороны размещения сопла 13. При выполнении форкамеры 11 с торцевыми стенками выходное отверстие 37 обратного клапана 15 располагается у ее придонной части (не показано).
Аэрационное устройство 4 может быть выполнено в виде размещенного в нижней части камеры 1 мультисоплового аппарата (фиг.6 и 7), который включает кольцевой корпус 38 (в виде тора) или кольцеобразный, например в виде трубчатого многоугольника (не показано). Корпус 38 снабжен ответвлениями, расположенными предпочтительно в радиальных плоскостях 39 корпуса 1 - радиальных 40 и наклонных 41 с локальным охватом пространства между корпусом 38 и трубой 8 для выдачи аэрированного материала. Радиальные 40 и наклонные 41 ответвления предпочтительно расположены с одинаковым угловым шагом ϕ в разных радиальных плоскостях 39, например со сдвигом их взаимного расположения на половину углового шага (0,5 ϕ). Сопла 42 мультисоплового аппарата 4 выполнены аналогично соплу 13, часть из них может быть снабжена индивидуальными турбулизаторами (не показано), которые имеют то же конструктивное исполнение, что и турбулизатор 14. Сопла 42, расположенные на корпусе 38, имеют непродольную угловую ориентацию относительно камеры 1, т.е., относительно ее продольной центральной оси (геометрической) 43. Сопла 42, расположенные на ответвлениях 40 и 41 корпуса 38, имеют чередующуюся вдоль каждой продольной оси 44 ответвления угловую направленность в поперечных плоскостях с отклонениями от радиальной плоскости 39 расположения продольной оси 44 каждого ответвления (на фиг.7 проекции продольных осей 44 совпадают со следами радиальных плоскостей 39). Угол α наклона части непродольной ориентации сопел 42, размещенных на корпусе 38 в радиальных плоскостях, к продольному направлению камеры 1 в сторону ее продольной оси 43 находится в пределах 10°≤α≤160° (фиг.8). Угол β наклона сопел 42 радиальных ответвлений 40 в поперечной плоскости ответвления от радиальной плоскости нахождения продольной его оси 44 в каждом из двух направлений (по часовой стрелке и против) находится в пределах ±5°≤β1≤±170° (фиг.9). Аналогичный угол β ориентации сопел 42 наклонных ответвлений 41 находится в пределах 0°≤β2≤±90°.
Аэрационное устройство 4 может быть выполнено в виде мультисоплового аппарата, который снабжен дополнительными, например двумя, автономными частями 45 и 46 (фиг.10), имеющими кольцевые (в виде тора) корпуса 47 и 48 или кольцеобразные, например в виде трубчатого многоугольника (не показано), с радиальными ответвления 49 и 50 соответственно. Дополнительные части 45 и 46 расположены в равных (на расстоянии h друг от друга) поперечных плоскостях камеры 1 в ее средней части вокруг трубы 8 для выдачи аэрированного материала. Радиальные ответвления 49 размещены внутренне относительно корпуса 47, а радиальные ответвления 50 - внешне относительно корпуса 48 и имеют противоположную направленность (к центральной оси 43 камеры 1 и к ее периферии соответственно). Возможны модификации выполнения дополнительных частей 45 и 46, в которых радиальные ответвления 49 и 50 имеют одноименную направленность (не показано). Возможна модификация выполнения многосоплового аппарата, в котором его дополнительные части расположены в одной поперечной плоскости камеры 1, т.е. при h=0, и, например, имеют одноименную (к центру) направленность радиальных ответвлений 49 (фиг.11) или смешанную (одоименно-разноименную) - одноименную (к центру) для от ветвлений 49 и противоположную (наружу) для ответвлений 50 (фиг.12). Сопла 42 дополнительных частей 45 и 46 ориентированы преимущественно вдоль камеры 1 (параллельно ее оси 43), причем по крайне мере часть периферийных сопел 51 корпусов 47 и 48 и/или их наружных ответвлений 50 имеет близкую к тангенциальной ориентацию. Для этого каждое периферийное сопло 51 выполнено с Г-образным патрубком 52. Последний имеет продольный (параллельный оси 43 камеры 1) участок 53 и перпендикулярный ему участок 54 соответственно с геометрическими осями 55 и 56 и приварен одним концом к корпусу 47 или наружным ответвлениям 50, а другим - к конусу 57, т.е. к сопловой части (фиг.14). Угол γ отклонения осей 56 (фиг.15) периферийных сопел 51 от касательных плоскостей 58 к цилиндру (не показано) радиуса ОА (от оси 43 камеры 1 до точки А на оси 55) в сторону оси 43 камеры 1 находится в пределах 5°≤γ≤15°.
Пневмокамерный насос работает следующим образом.
Порошкообразный или мелкозернистый материал, например цемент, подают в камеру 1 через загрузочный открытый клапан 2 при закрытом входном клапане 6 для подачи сжатого воздуха и открытом клапане 3 для выпуска сжатого воздуха. Когда заполнение камеры 1 материалом достигает заданного уровня, срабатывает указатель уровня (не показан), выдавая сигнал на закрытие клапана 3 выпуска воздуха и загрузочного клапана 2. Включается подача сжатого воздуха (фиг.13), т.е. открывается входной клапан 6 сжатого воздуха. Сжатый воздух по трубопроводу 5 нагнетается в аэрационное устройство 4 (мультисопловый аппарат), который с помощью сопел 42 и 51 инжектирует струи сжатого воздуха в находящийся в камере 1 материал, продавливая воздух в верхнюю часть камеры 1 - к открытому концу 9 компенсационной трубы 10. Воздух при своем прохождении материала отбирает у последненго тепловую энергию. Дальнейшее нарастание давления воздуха в камере 1 обеспечивает подъем шара 26 турбулизатора 14 (фиг.2), при этом пылевоздушная смесь из верхней части камеры проходит по компенсационной трубе 10 в форкамеру 11, а затем турбулизатор 14. Если давление пылевоздушной смеси в форкамере 11 ниже давления сжатого воздуха в трубопроводе 5, то обратный клапан открыт, чем обеспечивается удаление материала из форкамеры 11 путем смешения его с противотоком пылевоздушной смеси, поступающей по компенсационной трубе 10. Сопло 13 с турбулизатором 14 формирует турбулентную струю пылевоздушной смеси и направляет ее через вход 12 в трубу 8 для выдачи аэрированного материала (выдача последнего улучшается за счет эжекционного эффекта, создаваемого дросселем 7). По мере разгрузки камеры 1 от материала давление воздуха в ней падает до определенного значения, на которое настроено пневмореле (не показано). При срабатывании последнего входной клапан 6 сжатого воздуха трубопровода 5 закрывается, открывается клапан 3 для выпуска сжатого воздуха, а с некоторой задержкой во времени открывается загрузочный клапан 2. Затем цикл повторяется.
Использование изобретения позволит увеличить производительность пневмокамерных насосов при пониженном давлении и пониженном удельном расходе сжатого воздуха, а следовательно, уменьшить издержки на транспортировку порошкообразных и мелкозернистых материалов.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА ДЛЯ ПНЕВМАТИЧЕСКОГО ТРАНСПОРТИРОВАНИЯ СЫПУЧИХ И МЕЛКОЗЕРНИСТЫХ МАТЕРИАЛОВ | 2013 |
|
RU2550594C2 |
ПНЕВМОКАМЕРНЫЙ НАСОС ДЛЯ ТРАНСПОРТИРОВКИ ПОРОШКООБРАЗНЫХ И МЕЛКОЗЕРНИСТЫХ МАТЕРИАЛОВ | 2003 |
|
RU2248928C1 |
СПОСОБ ПНЕВМАТИЧЕСКОГО ТРАНСПОРТИРОВАНИЯ СЫПУЧИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2314988C2 |
ПНЕВМАТИЧЕСКАЯ ФЛОТАЦИОННАЯ МАШИНА | 1996 |
|
RU2100098C1 |
Питатель сыпучих материалов | 1987 |
|
SU1597335A1 |
КАМЕРНЫЙ ПИТАТЕЛЬ ПНЕВМОТРАНСПОРТНОЙ УСТАНОВКИ | 1996 |
|
RU2111356C1 |
ВСЕСОЮЗНАЯ •^ ПАТЕНТНО--ТЕ''Ш1ЧЕГ''АЯ Г\ЗЛ:;О|':^КА | 1972 |
|
SU331529A1 |
СПОСОБ ПЕННОЙ СЕПАРАЦИИ И ФЛОТАЦИИ | 1996 |
|
RU2100096C1 |
УСТАНОВКА БИОЛОГИЧЕСКОЙ ОЧИСТКИ ХОЗЯЙСТВЕННЫХ СТОЧНЫХ ВОД | 1995 |
|
RU2077508C1 |
Способ выгрузки сыпучего материала из емкости в пневмокамерный насос | 1989 |
|
SU1723000A1 |
Изобретение относится к пневмотранспорту сыпучих материалом и касается конструкции насоса. Насос содержит камеру (1) с загрузочным клапаном (2) и клапаном (3) для выпуска сжатого воздуха и размещенные в камере (1): аэрационное устройство (4) с трубопроводом (5), имеющим входной клапан (6) для подачи сжатого воздуха, оснащенную дросселем (7) трубу (8) для выдачи аэрированного материала и с открытым со стороны загрузочного клапана (2) концом (9) компенсационную трубу (10), которая снабжена форкамерой (11). Форкамера (11) связана через обратный клапан (15) с трубопроводом (5), несет оснащенное турбулизатором (14) сопло (13), расположенное перед входом (12) в трубу (8). Аэрационное устройство (4) является мультисопловым аппаратом с выборочно оснащенными турбулизаторами соплами. Изобретение обеспечивает устойчивую работу насоса при пониженном расходе и давлении сжатого воздуха за счет уменьшения сопротивления среды. 14 з.п. ф-лы, 15 ил.
ПНЕВМОКАМЕРНЫЙ НАСОС ДЛЯ ТРАНСПОРТИРОВКИ ПОРОШКООБРАЗНЫХ И МЕЛКОЗЕРНИСТЫХ МАТЕРИАЛОВ | 2003 |
|
RU2248928C1 |
Пневмотранспортное оборудование: Справочник /Под ред | |||
М.П.Калинушкина | |||
- Л.: Машиностроение, Ленинградское отделение, 1986, с.129-130, рис.6.4, 6.5 | |||
US 4502819 А, 23 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Одноколейное транспортное средство | 1985 |
|
SU1283147A1 |
Камерный питатель периодического действия | 1980 |
|
SU906868A1 |
Авторы
Даты
2007-12-20—Публикация
2006-03-24—Подача