ТЕПЛООБМЕННЫЙ МНОГОХОДОВОЙ КОЖУХОТРУБНЫЙ АППАРАТ Российский патент 2008 года по МПК F28F19/00 

Описание патента на изобретение RU2319918C2

Изобретение относится к теплообменной аппаратуре и может быть использовано в химической, нефтехимической, энергетической и других отраслях промышленности, где осуществляется нагрев или охлаждение технологических жидкостей и растворов.

Кожухотрубные многоходовые теплообменники относятся к числу наиболее часто применяемых поверхностных теплообменных аппаратов, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена.

Известен кожухотрубный многоходовой вертикальный теплообменник, содержащий цилиндрический корпус с крышками, в котором установлены трубные решетки с закрепленными в них теплообменными трубками (Касаткин А.Г, "Основные процессы и аппараты химической технологии". - М.: Химия, 1973, с.з27, рис.VIII-II/). Крышки корпуса и трубные решетки с трубками образуют торцовые растворные камеры, которые разделяют полость корпуса на трубное и межтрубное пространство. Особенностью устройства является то, что в крышках растворных камер установлены продольные перегородки так, что растворные камеры с патрубками подвода и отвода технологической жидкости разделены на входную/первого хода, выходную и поворотную полости. При этом перегородки делят трубный пучок на секции или ходы, что уменьшает суммарное поперечное сечение труб в каждой секции с возрастанием скорости жидкости в трубном пространстве и соответственно интенсивности теплообмена (устройство принято за прототип).

Недостатки известного теплообменного аппарата заключаются в том, что при движении обрабатываемой жидкости в поворотных камерах вследствие центробежных сил, возникающих при повороте с изменением направления движения жидкости на 180°, основной/транзитный поток ее отжимается к стенке, максимально удаленной от трубной решетки. На поясняющей фиг.1 показано, что после поворота и движения жидкости к трубной решетке неравномерность скоростей в потоке сохраняется и, двигаясь вдоль стенки и набегая на трубную решетку, поток жидкости заполняет лишь часть входных концов трубок. В трубках центральной части каждой секции движение жидкости слабо выражено и определяется лишь эжектирующим действием потока ее по другим теплообменным трубкам. Теплообменные трубки при таком движении жидкости практически не участвуют в процессе теплообмена и являются причиной работы теплообменного аппарата с пониженной по сравнению с возможной эффективностью. Кроме того, в поворотной камере между потоком жидкости, выходящим из теплообменных трубок трубного пучка прямого хода, и потоком, поступающим в теплообменные трубки трубного пучка обратного хода, возникает вихревая зона, интенсивно вращающаяся, перемешивающаяся и деформирующая не только уходящий, но и входящий потоки, и создающая тем самым существенное гидравлическое сопротивление. Эта вихревая зона увеличивается также за счет подсасывающего действия потоков раствора из входных концов трубок, в результате чего образуется дополнительный паразитный поток. Негативные последствия от натекания деформированного /не полного по сечению/ потока на трубную решетку в поворотной камере аналогичны последствиям от неравномерной раздачи по трубной решетке рабочей жидкости, поступающей в теплообменник через зауженный входной патрубок.

Таким образом, указанные недостатки обуславливают пониженную тепловую эффективность работы устройства в целом.

Указанные недостатки стимулировали поиск новых технических решений.

Предложенное устройство направлено на решение задачи уменьшения гидравлического сопротивления растворного тракта за счет равномерной раздачи поворотного потока по фронту трубных каналов, образованных трубными пучками.

Технический результат достигается тем, что в теплообменном многоходовом кожухотрубном аппарате, содержащем трубные решетки с закрепленными в них теплообменными трубами, размещенные в цилиндрическом кожухе с днищами и образующие с днищами кожуха торцевые растворные камеры, разделенные сплошными перегородками, примыкающими к стенкам днищ и трубным решеткам на входную, выходную и поворотные камеры, соединяющие последовательно между собой теплообменные трубы прямого и обратного хода в единый растворный тракт, согласно изобретению поворотные камеры снабжены разделительными перегородками, установленными на трубных решетках между трубами прямого и обратного хода с образованием полостей, сообщающихся между собой через образованные под днищами перепускные отверстия, при этом полости над трубами входа раствора каждого прямого и обратного хода снабжены сотовыми/ячеистыми решетками с прямыми направляющими пластинами стабилизации потока, смонтированными под обрез верхней кромки разделительных перегородок.

При этом разделительные перегородки выполнены высотой не менее 4-6d, где d - внутренний диаметр теплообменных труб. Кроме того, соты/ячейки пластинчатой решетки, образованные пластинами, выполнены со стороной размером не более 0,6-0,7d. А пластины решетки выполнены различной высоты, в пределах 2-3d, и смонтированы в решетке в габаритах ее по высоте, например, в следующем порядке: продольные пластины - высотой 3d, а поперечные - 2d.

Технический результат реализации отличительных признаков выражается в том, что разделительные перегородки трубных пучков прямого и обратного хода в сочетании с сотовыми решетками над трубными пучками обратного хода значительно повышают степень равномерности растекания рабочего потока по фронту трубной решетки, что обеспечивает равномерную раздачу потока практически по всей площади трубных пучков. В результате организованного подвода потока в теплообмене участвуют практически все трубы теплообменника, при этом увеличивается эффективная поверхность теплообмена и обеспечивается эффективный теплоперенос в аппарате в целом. Кроме того, каскадное разделение потока на разновысоких кромках пластин ячеек сотовой решетки в сочетании с определенным размером ячеек предотвращает загрязнение стенок и затягивание ячеек отложениями и оказывают выравнивающее действие с минимальными потерями на гидравлическое сопротивление. Оптимальные геометрические параметры и интервалы соотношений размеров элементов аппарата определены опытным путем и в совокупности обеспечивают ожидаемый технический результат.

Из анализа научно-технической и патентной литературы заявляемой совокупности признаков не выявлено, что позволяет сделать вывод о соответствии заявляемого технического решения критериям "новизна" и "изобретательский уровень".

Пример конкретного выполнения предложенного устройства поясняется чертежами, где на фиг.2 схематически изображена растворная камера теплообменного многоходового кожухотрубного аппарата в разрезе, на фиг.3 - поворотная растворная камера - вид А на фиг.2. Устройство содержит цилиндрический кожух/корпус 1 с размещенными в нем трубными решетками 2 и 3, в которых закреплены теплообменные трубки прямого 4 и обратного 5 хода, днища 6 и 7, с патрубками 8 и 9 подвода и отвода рабочей жидкости, образующие с трубными решетками 2, 3 торцовые растворные камеры 10, разделенные сплошными перегородками 11 на секции-ходы, которые образуют входную 12, выходную 13 и поворотные камеры 14 последовательного соединения теплообменных труб в растворный тракт. Трубы прямого 4 и обратного 5 хода в каждой поворотной камере 14 разделены перегородками 15, выполненными высотой не более 4-6 размеров внутреннего диаметра d теплообменных труб и установленными на трубных решетках с образованием перепускных отверстий 16 под днищами 6 и 7. Образованные полости 17 каждой поворотной камеры 14 над трубами входа раствора каждого прямого и обратного хода перекрыты на уровне верхней кромки разделительных перегородок 15 сотовыми решетками 18 с прямыми направляющими пластинами 19, 20 стабилизации потока. Пластины сотовой решетки выполнены разновысокими с размерами от 2-х до 3-х d и смонтированы в решетке в следующем порядке, например, продольные 19 высотой 2d, поперечные 20 высотой 3d с образованием сотовых ячеек 21 со стороной размером от 0,6 до 0,7d.

Устройство работает следующим образом.

Обрабатываемая жидкость/раствор поступает через патрубок в торцовую входную растворную камеру теплообменного аппарата и последовательно через теплообменные трубки прямого и обратного хода поворотных камер проходит весь технологический цикл теплообмена с теплоносителем межтрубного пространства и выводится из аппарата через выходную камеру и патрубок. Проходя через поворотные камеры, поток жидкости из теплообменных труб прямого хода поступает в полости ограниченные стенками камеры и разделительными перегородками, где получает направленное течение и равномерное распределение скорости по сечению. Далее, огибая разделительную перегородку через перепускное отверстие, поток жидкости меняет направление движения на 180° и попадает на сотовую решетку, где гасятся возникшие в нем вихревые потоки и формируется направленное движение жидкости к трубной решетке и к фронту теплообменных труб обратного хода. По этим трубам обрабатываемая жидкость/раствор попадает в следующие поворотные камеры аналогичной конструкции, где указанные гидродинамические процессы повторяются. Из последнего трубного пучка жидкость попадает в выходную растворную камеру и через патрубок выводится из аппарата.

Благодаря разделению поворотной камеры на две полости с достигнутым опытным путем оптимальными соотношениями размеров разделительной перегородки, перепускного отверстия и ячеек сотовой решетки из разновысоких пластин создаются условия предупреждения образования вихревой зоны транзитных потоков обрабатываемой жидкости перед фронтом трубных пучков обратного хода, что обеспечивает равномерную раздачу потока по всем трубам трубного пучка. В результате организованного таким образом потока в теплообмене участвуют практически все трубы теплообменника, что приводит к рациональному увеличению коэффициента теплопередачи многоходового аппарата.

Похожие патенты RU2319918C2

название год авторы номер документа
Многоходовый кожухотрубчатый теплообменник 2018
  • Шершевский Александр Геннадьевич
  • Болитэр Валерий Аркадьевич
  • Султанов Юрий Радикович
  • Михайлова Татьяна Александровна
  • Мусихин Виктор Сергеевич
  • Топорков Алексей Александрович
RU2700990C1
ВЫПАРНОЙ АППАРАТ С ПАДАЮЩЕЙ ПЛЕНКОЙ 2007
  • Трофимов Леон Игнатьевич
  • Подберезный Валентин Лазаревич
  • Никулин Валерий Александрович
RU2323761C1
ТЕПЛООБМЕННЫЙ АППАРАТ 1999
  • Олесевич А.К.
  • Олесевич К.А.
  • Парамонова Н.В.
RU2262054C2
Вертикальный кожухотрубчатый теплообменник 2018
  • Шершевский Александр Геннадьевич
  • Болитэр Валерий Аркадьевич
  • Султанов Юрий Радикович
  • Штырляев Илья Евгеньевич
RU2697213C1
ТЕПЛООБМЕННИК 2018
  • Абубикеров Даниил Рафикович
  • Матвеев Андрей Павлович
  • Подсекин Александр Валентинович
  • Рогов Юрий Васильевич
RU2700311C1
ТЕПЛООБМЕННИК 2007
  • Лебедев Сергей Юрьевич
  • Горячев Геннадий Сергеевич
  • Кульбякин Владимир Павлович
RU2334187C1
ТЕПЛООБМЕННИК 2008
  • Друк Михаил Петрович
  • Миронов Руслан Вячеславович
  • Кузнецов Дмитрий Владиславович
  • Беззатеев Алексей Константинович
RU2386095C2
ВЕРТИКАЛЬНЫЙ КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК 2015
  • Шершевский Александр Геннадьевич
  • Болитэр Валерий Аркадьевич
  • Костин Павел Андреевич
  • Аликин Павел Павлович
  • Карпов Дмитрий Николаевич
RU2603450C1
РЕКУПЕРАТИВНЫЙ ТЕПЛООБМЕННИК ТРУБЧАТОЙ ПЕЧИ 2008
  • Журба Александр Максимович
RU2364810C1
КОЖУХОТРУБНЫЙ ТЕПЛООБМЕННИК 2019
  • Казелли Кристиано
  • Редаэлли Лука
RU2775336C2

Иллюстрации к изобретению RU 2 319 918 C2

Реферат патента 2008 года ТЕПЛООБМЕННЫЙ МНОГОХОДОВОЙ КОЖУХОТРУБНЫЙ АППАРАТ

Изобретение предназначено для теплообмена и может быть использовано в химической, нефтехимической, энергетической и других отраслях промышленности. Теплообменный аппарат содержит трубные решетки с закрепленными в них теплообменными трубами, размещенные в цилиндрическом кожухе с днищами и образующие с днищами кожуха торцевые растворные камеры, разделенные сплошными перегородками, примыкающими к стенкам днищ и трубным решеткам, на входную, выходную и поворотные камеры, соединяющие последовательно между собой теплообменные трубы прямого и обратного хода в единый растворный тракт. Поворотные камеры снабжены разделительными перегородками, установленными на трубных решетках между трубами прямого и обратного хода с образованием полостей, сообщающихся между собой через образованные под днищами перепускные отверстия. Полости над трубами входа раствора каждого прямого и обратного хода снабжены сотовыми/ячеистыми решетками с прямыми направляющими пластинами стабилизации потока, смонтированными под обрез верхней кромки разделительных перегородок. Изобретение обеспечивает уменьшение гидравлического сопротивления растворного тракта. 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 319 918 C2

1. Теплообменный многоходовой кожухотрубный аппарат, содержащий трубные решетки с закрепленными в них теплообменными трубами, размещенные в цилиндрическом кожухе с днищами и образующие с днищами кожуха торцевые растворные камеры, разделенные сплошными перегородками, примыкающими к стенкам днищ и трубным решеткам, на входную, выходную и поворотные камеры, соединяющие последовательно между собой теплообменные трубы прямого и обратного хода в единый растворный тракт, отличающийся тем, что поворотные камеры снабжены разделительными перегородками, установленными на трубных решетках между трубами прямого и обратного хода с образованием полостей, сообщающихся между собой через образованные под днищами перепускные отверстия, при этом полости над трубами входа раствора каждого прямого и обратного хода снабжены сотовыми/ячеистыми решетками с прямыми направляющими пластинами стабилизации потока, смонтированными под обрез верхней кромки разделительных перегородок.2. Теплообменный многоходовой кожухотрубный аппарат по п.1, отличающийся тем, что разделительные перегородки выполнены высотой не менее 4-6d, где d - внутренний диаметр теплообменных труб.3. Теплообменный многоходовой кожухотрубный аппарат по п.1, отличающийся тем, что соты/ячейки пластинчатой решетки, образованные пластинами, выполнены со стороной размером не более 0,6-0,7d.4. Теплообменный многоходовой кожухотрубный аппарат по п.1, отличающийся тем, что пластины решетки выполнены различной высоты в пределах 2-3d и смонтированы в решетке в габаритах ее по высоте, например, в следующем порядке: продольные пластины высотой 3d, а поперечные - 2d.

Документы, цитированные в отчете о поиске Патент 2008 года RU2319918C2

Теплообменник 1989
  • Динцин Владислав Абрамович
  • Владимиров Владимир Иванович
  • Бондаренко Владимир Николаевич
  • Кузнецова Нина Андреевна
SU1721425A1
РАЗДАЮЩАЯ КАМЕРА ТЕПЛООБМЕННИКА 1991
  • Дельнов В.Н.
  • Файзуллин Ф.Х.
RU2028574C1
Коллектор теплообменного аппарата 1987
  • Байгалиев Борис Ергазович
  • Аверкиев Леонид Александрович
  • Шалыминов Павел Николаевич
  • Шелахаев Сергей Васильевич
SU1502955A1
Распределительный коллектор трубчатого теплообменника 1980
  • Ельчанинов Вячеслав Дмитриевич
  • Обухов Николай Яковлевич
  • Степанова Юлия Александровна
  • Шаповалов Дмитрий Александрович
  • Гречишников Владимир Иванович
SU877309A1
СПОСОБ ФИНИШНОЙ ОБРАБОТКИ НАПРАВЛЯЮЩИХ СКОЛЬЖЕНИЯ 1998
  • Улашкин А.П.
  • Решетникова О.В.
RU2148480C1

RU 2 319 918 C2

Авторы

Никулин Валерий Александрович

Подберезный Валентин Лазаревич

Трофимов Леон Игнатьевич

Птухин Валерий Алексеевич

Черноскутов Валентин Степанович

Смоляницкий Борис Исаакович

Пустынных Евгений Васильевич

Фомин Эдуард Сергеевич

Аминов Сибагатулла Нуруллович

Жаров Анатолий Федорович

Даты

2008-03-20Публикация

2005-08-30Подача