ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА Российский патент 2008 года по МПК F02K9/18 

Описание патента на изобретение RU2322603C1

Изобретение относится к ракетной технике, а именно к зарядам ракетных двигателей твердого топлива (РДТТ) и предназначено для использования в РДТТ с высокими энергетическими характеристиками снарядов систем залпового огня.

Повышение энергетических характеристик РДТТ связано с применением скрепленных зарядов из твердого топлива с высоким коэффициентом заполнения.

Известен заряд ракетного твердого топлива, содержащий последовательно расположенные топливные секции, диаметр канала которых увеличивается к соплу, скрепленные с корпусом РДТТ (см., например А.А.Шишков и др. Рабочие процессы в РДТТ. - М., Машиностроение, 1989, с.82), принятый за аналог.

Задачей данного технического решения явилось достижение высокого значения коэффициента объемного заполнения.

Общими признаками с предлагаемым зарядом является наличие корпуса и последовательно расположенных секций, горящих по каналам и торцам.

Однако подобную конструкцию заряда отличает ввиду существенного различия толщин горящего свода секций большая величина остатков заряда, догорающих при пониженном давлении в конце работы РДТТ, а также значительное изменение давления в РДТТ, что приводит к недопустимому разбросу энергетических характеристик.

Наиболее близким по технической сути и достигаемому результату является заряд по патенту №2145674, F02K 9/18, принятый за прототип. Он содержит корпус, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом, торцевые манжеты и защитно-крепящий слой.

Принятый за прототип заряд функционирует следующим образом. После зажжения заряда происходит его горение по торцам головного и хвостового полузарядов, звездообразному каналу головного полузаряда и цилиндрическому каналу хвостового полузаряда, что обеспечивает практически постоянную поверхность горения. В области торцов хвостового и головного полузарядов горение сводов происходит в радиальном и осевом направлении (со стороны торцов). Однако при создании зарядов с высоким коэффициентом заполнения (в том числе за счет минимизации толщины защитно-крепящего слоя) были обнаружены существенные недостатки данной конструкции. При горении полузарядов в случае, если начальная толщина горящего свода хвостового полузаряда в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем будет превышать длину зоны контакта в осевом продольном сечении указанной манжеты с хвостовым полузарядом, фронт горения выходит на поверхность тонкослойного защитно-крепящего слоя со стороны сопловой манжеты. При этом поверхность горения полузарядов, следовательно, и давление в РДТТ, близки к максимальным значениям, что обусловливает высокий уровень тепловых потоков от продуктов сгорания к защитно-крепящему слою, толщина которого для современных РДТТ с высоким коэффициентом заполнения не превышает долей миллиметра, что, как показывает опыт отработки, приводит к прогару корпуса в указанном сечении. Аналогичная картина наблюдается и при горении головного полузаряда в области торца, обращенного к хвостовому полузаряду.

Таким образом, задачей данного технического решения (прототипа) являлось создание конструкции заряда, обеспечивающего практически постоянную поверхность горения и давление в РДТТ.

Общими признаками с предлагаемым авторами устройством является наличие в заряде корпуса, головного полузаряда со звездообразным каналом, хвостового полузаряда с цилиндрическим каналом, торцевых манжет и защитно-крепящего слоя.

В отличие от прототипа в предлагаемом заряде хвостовой полузаряд выполнен с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты с хвостовым полузарядом, а головной полузаряд выполнен с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом.

Именно это позволяет сделать вывод о наличии причинно-следственной связи между совокупностью существенных признаков заявляемого технического решения и достигаемым техническим результатом.

Указанные признаки, отличительные от прототипа и на которые распространяется испрашиваемый объем правовой охраны, во всех случаях достаточны.

Задачей предлагаемого изобретения является повышение надежности функционирования заряда с высоким объемным заполнением.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном заряде, содержащем корпус, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом, торцевые манжеты и защитно-крепящий слой, особенность заключается в том, что в нем хвостовой полузаряд выполнен с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты с хвостовым полузарядом, а головной полузаряд выполнен с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом.

Новая совокупность конструктивных элементов, а также наличие связей между ними позволяют, в частности, за счет

- выполнения хвостового полузаряда с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты с хвостовым полузарядом, обеспечить выход фронта горения хвостового полузаряда в области соплового торца на поверхность защитно-крепящего слоя в радиальном направлении при малых толщинах догорающего свода хвостового полузаряда, чем достигается минимизация времени воздействия продуктов сгорания на тонкослойное защитно-крепящее покрытие. При увеличении начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем свыше 0,99, возникает вероятность выхода фронта горения на защитно-крепящий слой со стороны сопловой манжеты из-за разброса теплофизических характеристик материалов и технологических допусков. При уменьшении начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем ниже 0,85, нерационально уменьшается плотность заполнения, поскольку в этом случае часть объема занимает не топливо, а сопловая манжета;

- выполнения головного полузаряда с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом обеспечивать выход фронта горения головного полузаряда в области соплового торца на поверхность защитно-крепящего слоя в радиальном направлении при незначительных толщинах догорающего свода головного полузаряда, что минимизирует время воздействия продуктов сгорания на защитно-крепящее покрытие головного полузаряда. При увеличении максимальной начальной толщины горящего свода головного полузаряда в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящим слоем, свыше 0,99, появляется вероятность выхода фронта горения на защитно-крепящий слой со стороны торцевой манжеты, обращенной к хвостовому полузаряду, в силу наличия разброса характеристик материала манжеты, защитно-крепящего слоя и топлива, а также технологических допусков. При уменьшении максимальной начальной толщины горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящим слоем, ниже 0,85, также нерационально уменьшается плотность заполнения.

Сущность изобретения заключается в том, что в заряде ракетного топлива, содержащем корпус, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом, торцевые манжеты и защитно-крепящий слой, хвостовой полузаряд выполнен с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты с хвостовым полузарядом, а головной полузаряд выполнен с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящем слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом.

Сущность изобретения поясняется чертежом, на котором изображен предлагаемый заряд с частичным вырезом.

Предлагаемый заряд содержит корпус 1, защитно-крепящий слой 2, головной полузаряд со звездообразным каналом 3, хвостовой полузаряд с цилиндрическим каналом 4, торцевую манжету головного полузаряда 5, торцевую манжету хвостового полузаряда 6. Хвостовой полузаряд 4 выполнен с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты 6 с защитно-крепящим слоем 2, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты 6 с хвостовым полузарядом 4, а головной полузаряд 3 выполнен с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты 5, обращенной к хвостовому полузаряду 4, с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом 3.

Предложенный заряд функционирует следующим образом.

После зажжения головного полузаряда 3 и хвостового полузаряда 4 хвостовой полузаряд 4 в области торцевой манжеты 6 горит в радиальном направлении и по сопловому торцу. За счет предложенного выполнения хвостового полузаряда 4 обеспечивается выход фронта горения хвостового полузаряда 4 в области соплового торца на поверхность защитно-крепящего слоя 2 в радиальном направлении при малых толщинах догорающего свода хвостового полузаряда 4, чем достигается минимизация времени воздействия продуктов сгорания на тонкослойное защитно-крепящее покрытие 2, что исключает прогар корпуса 1. За счет предлагаемого выполнения головного полузаряда 3 обеспечивается выход фронта горения головного полузаряда 3 в области соплового торца на поверхность защитно-крепящего слоя в радиальном направлении при незначительных толщинах догорающего свода головного полузаряда 3, что минимизирует время воздействия продуктов сгорания на защитно-крепящее покрытие 2 головного полузаряда 3.

Выполнение заряда твердого топлива в соответствии с изобретением позволило повысить надежность функционирования зарядов с высоким объемным заполнением за счет резкого снижения температурного режима корпуса согласно результатам огневых стендовых испытаний и летных испытаний в составе ракет.

Изобретение может быть использовано при разработке зарядов твердого топлива для ракетных двигателей ракет различных классов, в том числе ракет реактивных систем залпового огня.

Указанный положительный эффект подтверждается огневыми стендовыми и летными испытаниями зарядов, выполненных в соответствии с изобретением, в составе двигателей ракет.

В настоящее время разработана конструкторская документация, проведены испытания зарядов, налажено серийное производство.

Похожие патенты RU2322603C1

название год авторы номер документа
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2008
  • Поваров Сергей Александрович
  • Мельник Геннадий Иванович
  • Шабалин Владимир Михайлович
  • Макаровец Николай Александрович
  • Денежкин Геннадий Алексеевич
  • Калюжный Геннадий Васильевич
  • Петуркин Дмитрий Михайлович
  • Каширкин Александр Александрович
  • Ерохин Владимир Евгеньевич
  • Захаров Олег Львович
  • Трегубов Виктор Иванович
  • Куценко Геннадий Васильевич
  • Амарантов Георгий Николаевич
  • Некрасов Валентин Иванович
  • Ковтун Виктор Евгеньевич
  • Колач Петр Кузьмич
  • Аляжединов Вадим Рашитович
RU2391530C1
Заряд ракетного твердого топлива 2003
  • Кузьмицкий Г.Э.
  • Гринберг С.И.
  • Макаров Л.Б.
  • Лисовский В.М.
  • Вронский Н.М.
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Семилет В.В.
  • Подчуфаров В.И.
  • Трегубов В.И.
  • Каширкин А.А.
  • Королева Н.Б.
  • Шубкин Е.А.
RU2220312C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Семилет В.В.
  • Обозов Л.И.
  • Аляжединов В.Р.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Макаров Л.Б.
  • Лисовский В.М.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Подчуфаров В.И.
  • Калюжный Г.В.
RU2145674C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2001
  • Аляжединов В.Р.
  • Денежкин Г.А.
  • Калюжный Г.В.
  • Кузьмицкий Г.Э.
  • Макаровец Н.А.
  • Обозов Л.И.
  • Семилет В.В.
  • Талалаев А.П.
RU2180049C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Семилет В.В.
  • Обозов Л.И.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Каширкин А.А.
  • Аляжединов В.Р.
  • Макаровец Н.А.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Винокуров Ю.А.
  • Гринберг С.И.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Денежкин Г.А.
  • Некрасов В.И.
RU2145673C1
ЗАРЯД РАКЕТНОГО ТВЁРДОГО ТОПЛИВА 2002
  • Талалаев А.П.
  • Колесников В.И.
  • Куценко Г.В.
  • Амарантов Г.Н.
  • Колач П.К.
  • Плотникова Т.Н.
  • Пичкалёв Ж.А.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Макаров Л.Б.
  • Шипунов А.Г.
  • Филимонов Г.Д.
  • Коликов В.А.
  • Коренной А.В.
  • Сурначев А.Ф.
  • Шатрова Э.А.
  • Швыкин Ю.С.
RU2212556C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Семилет В.В.
  • Подчуфаров В.И.
  • Обозов Л.И.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Куксенко А.Ф.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Вронский Н.М.
  • Макаров Л.Б.
  • Гринберг С.И.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
RU2150599C1
Заряд ракетного твердого топлива 2003
  • Кузьмицкий Г.Э.
  • Винокуров Ю.А.
  • Романович А.П.
  • Макаров Л.Б.
  • Божья-Воля Н.С.
  • Федченко Н.Н.
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Семилет В.В.
  • Подчуфаров В.И.
  • Трегубов В.И.
  • Каширкин А.А.
  • Королева Н.Б.
  • Шубкин Е.А.
RU2220311C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1998
  • Обозов Л.И.
  • Каширкин А.А.
  • Петуркин Д.М.
  • Семилет В.В.
  • Макаровец Н.А.
  • Куценко Г.В.
  • Некрасов В.И.
  • Шеврикуко И.Д.
  • Амарантов Г.Н.
  • Смирнов В.Д.
  • Кузьмицкий Г.Э.
  • Вронский Н.М.
  • Лисовский В.М.
  • Гринберг С.И.
  • Макаров Л.Б.
  • Филатов В.Г.
RU2125175C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 2005
  • Амарантов Георгий Николаевич
  • Арефьев Вадим Сергеевич
  • Голов Вячеслав Михайлович
  • Дружинин Владимир Георгиевич
  • Замятин Игорь Леонидович
  • Иштулов Альберт Георгиевич
  • Ковальчук Виктор Яковлевич
  • Колач Петр Кузьмич
  • Тарасов Анатолий Игнатьевич
  • Углов Валерий Михайлович
  • Ширмовский Вячеслав Иванович
RU2298110C2

Реферат патента 2008 года ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА

Изобретение относится к области ракетной техники, а именно к реактивным снарядам реактивных систем залпового огня. Заряд ракетного топлива содержит корпус, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом, торцевые манжеты и защитно-крепящий слой. Хвостовой полузаряд выполнен с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты с хвостовым полузарядом. Головной полузаряд выполнен с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду с защитно-крепящим слоем, составляющей 0,85...0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом. Изобретение позволяет повысить надежность функционирования заряда с высоким объемным заполнением за счет снижения температурного режима корпуса ракетного двигателя. 1 ил.

Формула изобретения RU 2 322 603 C1

Заряд ракетного топлива, содержащий корпус, головной полузаряд со звездообразным каналом и хвостовой полузаряд с цилиндрическим каналом, торцевые манжеты и защитно-крепящий слой, отличающийся тем, что в нем хвостовой полузаряд выполнен с начальной толщиной горящего свода в сечении, проходящем через зону контакта сопловой торцевой манжеты с защитно-крепящим слоем, составляющей 0,85-0,99 длины зоны контакта в осевом продольном сечении сопловой торцевой манжеты с хвостовым полузарядом, а головной полузаряд выполнен с максимальной начальной толщиной горящего свода в сечении, проходящем через зону контакта торцевой манжеты, обращенной к хвостовому полузаряду, с защитно-крепящим слоем, составляющей 0,85-0,99 длины зоны контакта в осевом продольном сечении данной манжеты с головным полузарядом.

Документы, цитированные в отчете о поиске Патент 2008 года RU2322603C1

ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 1999
  • Семилет В.В.
  • Обозов Л.И.
  • Петуркин Д.М.
  • Филатов В.Г.
  • Каширкин А.А.
  • Аляжединов В.Р.
  • Макаровец Н.А.
  • Кузьмицкий Г.Э.
  • Федченко Н.Н.
  • Винокуров Ю.А.
  • Гринберг С.И.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Денежкин Г.А.
  • Некрасов В.И.
RU2145673C1
Заряд ракетного твердого топлива 2003
  • Кузьмицкий Г.Э.
  • Гринберг С.И.
  • Макаров Л.Б.
  • Лисовский В.М.
  • Вронский Н.М.
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Семилет В.В.
  • Подчуфаров В.И.
  • Трегубов В.И.
  • Каширкин А.А.
  • Королева Н.Б.
  • Шубкин Е.А.
RU2220312C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1997
  • Бондарев Л.Г.
  • Гаськов К.А.
  • Денежкин Г.А.
  • Маслов В.А.
  • Проскурин Н.М.
RU2135806C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1998
  • Денежкин Г.А.
  • Семилет В.В.
  • Обозов Л.И.
  • Борисов О.Г.
  • Петуркин Д.М.
  • Макаровец Н.А.
  • Куценко Г.В.
  • Некрасов В.И.
  • Шеврикуко И.Д.
  • Амарантов Г.Н.
  • Смирнов В.Д.
  • Кузьмицкий Г.Э.
  • Вронский Н.М.
  • Лисовский В.М.
  • Гринберг С.И.
  • Макаров Л.Б.
  • Филатов В.Г.
RU2125174C1
Заряд ракетного твердого топлива 2003
  • Кузьмицкий Г.Э.
  • Винокуров Ю.А.
  • Романович А.П.
  • Макаров Л.Б.
  • Божья-Воля Н.С.
  • Федченко Н.Н.
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Талалаев А.П.
  • Колесников В.И.
  • Амарантов Г.Н.
  • Колач П.К.
  • Некрасов В.И.
  • Семилет В.В.
  • Подчуфаров В.И.
  • Трегубов В.И.
  • Каширкин А.А.
  • Королева Н.Б.
  • Шубкин Е.А.
RU2220311C1
УСТРОЙСТВО для ПОДЖАТИЯ КРЫШКИ ЛЮКА 0
SU270412A1

RU 2 322 603 C1

Авторы

Поваров Сергей Александрович

Мельник Геннадий Иванович

Шабалин Владимир Михайлович

Каширкин Александр Александрович

Королева Наталья Борисовна

Петуркин Дмитрий Михайлович

Семилет Виктор Васильевич

Трегубов Виктор Иванович

Макаровец Николай Александрович

Денежкин Геннадий Алексеевич

Даты

2008-04-20Публикация

2007-04-02Подача