СПОСОБ ИЗВЛЕЧЕНИЯ ГЕРМАНИЯ ИЗ ШЛАКОВ ПЕРЕРАБОТКИ ПОЛИМЕТАЛЛИЧЕСКИХ РУД Российский патент 2008 года по МПК C22B41/00 C22B3/12 

Описание патента на изобретение RU2326951C1

Изобретение относится к гидрометаллургии, а именно к технологии переработки шлаков сульфидных полиметаллических руд, содержащих редкие рассеянные металлы. Изобретение может быть использовано в технологии получения редких рассеянных металлов из шлаков медно-свинцово-цинковых сульфидных руд.

Наиболее близким аналогом по совокупности существенных признаков и назначению является способ извлечения германия из шлаков переработки полиметаллических руд, включающий вскрытие шлаков с выделением германия в раствор и селективную сорбцию германия из раствора ионитом (Коровин С.С.и др. Редкие и рассеянные элементы. Химия и технология т.III, М., МИСИС, 2003, с.202-214). Недостатком данного способа является недостаточно высокая степень извлечения германия из многокомпонентного раствора.

Техническим результатом является устранение указанного недостатка, а именно повышение степени извлечения германия из шлаков переработки полиметаллических руд.

Технический результат достигается тем, что в способе извлечения германия из шлаков переработки полиметаллических руд, включающем вскрытие шлаков с выделением германия в раствор и селективную сорбцию германия из раствора ионитом, согласно изобретению вскрытие ведут автоклавным выщелачиванием шлаков раствором щелочи с концентрацией 20 мас.% при температуре 200÷220°С с последующей фильтрацией и отделением раствора, содержащего германий и цинк, и селективную сорбцию германия ведут из отфильтрованного раствора при концентрации щелочи в растворе 2-8 мас.% на слабоосновном анионите.

Способ поясняется чертежами, где на фиг.1 представлен рентгенофлюоресцентный спектр цинка и германия до и после сорбции, на фиг.2 - кривая элюирования слабоосновного анионита.

Способ осуществляется следующим образом.

Шлак после дробления и измельчения поступает на автоклавное выщелачивание. Оптимальные условия ведения процесса выщелачивания, способствующие наиболее полному вскрытию шлака и выделению германия и цинка в раствор, являются: концентрация щелочи 20 мас.%, температура процесса 200÷220°С, соотношение фаз ж:т=5, время 60-90 минут. После отделения раствора от кека фильтрацией щелочной раствор вместе с промывными водами, уменьшающими концентрацию щелочи до 2-8 мас.%, поступают самотеком в колонки сверху вниз, заполненные слабоосновным анионитом (ионообменная смола), где происходит селективная сорбция германия при концентрации щелочи в растворе 2-8 мас.%. Если концентрация щелочи менее 2 мас.%, то возможно осаждение цинка, если более 8 мас.%, то емкость ионообменной смолы уменьшается. Цинк, содержание которого 35-40 г/л, и сопутствующие элементы (Al 0,15-0,2 г/л, Pb менее 0,1 г/л) в этих условиях не сорбируются и не мешают извлечению германия, а уходят с раствором для дальнейшей переработки.

Десорбцию Ge проводят 1М раствором HCl в виде тонкой взвеси GeO2·nH2O, которую отделяют фильтрацией, а затем путем сушки получают оксид германия - GeO2.

Внутренний диаметр колонки 0,3 м, высота 3 м, объем 0,8 м3. Емкость смолы 20 гGe/кг. Насыпная масса смолы 0,4 (кг сухой/л набухшей). Емкость 8-9 гGe/л смолы набухшей. Время контакта 0,25 часа. Регенерация требуется через 20-25 часов (1 раз в сутки); имеем, например, 5 колонок в работе и 1 запасную колонку на регенерацию. 1 колонка поглощает максимум 6,8 кг Ge до насыщения.

При данном способе переработки германийсодержащих шлаков возможно попутное получение товарного оксида цинка. Раствор цинка, отделенный от германия, поступает на карбонизацию, где образовывается его основная соль - (ZnOH)2СО3, которую затем прокаливают, получая товарный оксид цинка - ZnO.

Влияние цинка на сорбцию германия было изучено в статических условиях. Раствор цинка и германия (рН 14) перемешивался на магнитной мешалке в течение 2-2,5 часов. Содержание цинка и германия определяли рентгенофлуоресцентным методом, используя кристалл-дифракционный сканирующий спектрометр «SPECTROSCAN-U», по измеренной интенсивности их рентгеноспектральных линий. Из фиг.1 видно, что интенсивность рентгеноспектральной линии германия уменьшилось примерно в четыре раза, тогда как для цинка она практически не изменилась.

Экспериментальные значения коэффициентов распределения Кр, для цинка 1,39 и для германия 74,9, вычислялись по общей формуле где С0 и С - исходная и равновесная концентрация ионов в растворе, моль/л; - соотношение массы раствора и сорбента, которое составляло в опыте 52,7:2 при плотности раствора 1,054 г/см3.

Коэффициент разделения металлов рассчитывался по формуле

При изучении динамической емкости использовали модельный раствор с концентрацией аниона полученный растворением оксида германия (0,431 г) в 1 л 5%-ного раствора щелочи. Содержание германия определяли фотометрическим методом по интенсивности полосы поглощения комплекса германия с молибдатом аммония при длине волны, равной 428 нм (см. табл.1).

Таблица 1Результаты испытания слабоосновного анионитаОбъем пропущенного раствора, лКонцентрация германия в пробеэкв/лг/л323·10-40,011361,85·10-30,067404,12·10-30,150435,31·10-30,193476,46·10-30,234527,09·10-30,257577,51·10-30,273637,78·10-30,282698,06·10-30,293758,24·10-30,299

До пропущенного объема, равного 32 л, в анализируемых пробах раствора германий не был обнаружен (фиг.2).

По результатам экспериментально полученных данных были рассчитаны динамическая обменная емкость до проскока по германию и полная обменная емкость. Насыпная масса ионообменной смолы в набухшем состоянии составила 0,40 г/мл (по отношению к массе сухой смолы).

Таблица 2Динамическая и объемная емкости слабоосновного анионитаДинамическая емкость до проскокаПолная обменная емкостьгGe/кггGe/кг0,260,66240,300,7426,9

Емкости, приведенные в табл.2, рассчитаны на литр набухшей и на килограмм сухой ионообменной смолы в эквивалентах и граммах элементарного германия.

Таким образом, в заявленном способе достигается селективная сорбции германия на слабоосновном анионите из сильнощелочных растворов, кроме того, возможно попутное получение оксида цинка путем карбонизации раствора цинка и последующей прокалки основной его соли.

Похожие патенты RU2326951C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ЦИНК- И ГЕРМАНИЙСОДЕРЖАЩЕГО ТВЕРДОФАЗНОГО ПОЛИМЕТАЛЛИЧЕСКОГО МИНЕРАЛЬНОГО МАТЕРИАЛА 2007
  • Черемисинов Леонид Михайлович
  • Кураев Артем Михайлович
RU2337164C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ МЕДНО-ЦИНКОВЫХ МАТЕРИАЛОВ 1995
  • Тимошенко Эльмира Мироновна
  • Корсунский Владимир Ильич
  • Китай Аркадий Гершевич
  • Шуленина Зинаида Макаровна
  • Ануфриева Светлана Ивановна
RU2082781C1
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ РУД И ПРОДУКТОВ ИХ ПЕРЕРАБОТКИ 2012
  • Шереметьев Михаил Федорович
  • Нестеров Юрий Васильевич
  • Калинин Андрей Леонидович
  • Сахарова Лариса Илларионовна
  • Хараш Марина Ильнична
  • Будницкий Павел Евсеевич
  • Бобров Александр Георгиевич
  • Летюшов Александр Александрович
RU2490344C1
СПОСОБ КОЛЛЕКТИВНОЙ ФЛОТАЦИИ СУЛЬФИДОВ, СОДЕРЖАЩИХ БЛАГОРОДНЫЕ МЕТАЛЛЫ, ИЗ ПОЛИМЕТАЛЛИЧЕСКИХ ЖЕЛЕЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 1995
  • Телешман И.И.
  • Манцевич М.И.
  • Нафталь М.Н.
  • Марков Ю.Ф.
  • Меджибовский А.С.
  • Волков В.И.
  • Железова Т.М.
  • Розенберг Ж.И.
  • Николаев Ю.М.
  • Линдт В.А.
  • Сухобаевский Ю.Я.
  • Ширшов Ю.А.
  • Кунаева И.В.
  • Вашкеев В.М.
  • Обеднин А.К.
  • Маркичев В.Г.
  • Митюков В.В.
RU2100095C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ И ПЛАТИНОВЫХ МЕТАЛЛОВ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ НА НОСИТЕЛЯХ ИЗ ОКСИДА АЛЮМИНИЯ 2013
  • Сонькин Владимир Семенович
  • Ковалев Сергей Васильевич
  • Сидин Евгений Геннадьевич
  • Гельман Геннадий Ефимович
  • Муралеев Адиль Ринатович
  • Маганов Дмитрий Дмитриевич
RU2525022C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ НА НОСИТЕЛЯХ ИЗ ОКСИДА АЛЮМИНИЯ, СОДЕРЖАЩИХ ПЛАТИНОВЫЕ МЕТАЛЛЫ И РЕНИЙ 2010
  • Темеров Сергей Анатольевич
  • Плечкина Светлана Ивановна
RU2421532C1
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ МЕТАЛЛСОДЕРЖАЩЕГО МИНЕРАЛЬНОГО СЫРЬЯ 2010
  • Фомин Александр Михайлович
  • Хадарцев Олег Мисостович
  • Тюремнов Александр Вадимович
RU2476610C2
СПОСОБ ОБОГАЩЕНИЯ ТЕХНОГЕННОГО МИНЕРАЛЬНОГО СЫРЬЯ ЦВЕТНЫХ МЕТАЛЛОВ 2012
  • Бочаров Владимир Алексеевич
  • Игнаткина Владислава Анатольевна
  • Хачатрян Лилия Степановна
RU2480290C1
Способ комплексной переработки сульфидно-окисленных медно-порфировых руд 2018
  • Ларин Валерий Константинович
  • Бикбаев Леонид Шамильевич
  • Актемиров Асламбек Магомедович
  • Бибик Евгений Георгиевич
RU2685621C1
СПОСОБ ПОЛУЧЕНИЯ ЗОЛОТА ИЗ СУЛЬФИДНЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД 2008
  • Смолянинов Владислав Владимирович
  • Шехватова Галина Владимировна
  • Смагин Вадим Анатольевич
RU2385959C1

Иллюстрации к изобретению RU 2 326 951 C1

Реферат патента 2008 года СПОСОБ ИЗВЛЕЧЕНИЯ ГЕРМАНИЯ ИЗ ШЛАКОВ ПЕРЕРАБОТКИ ПОЛИМЕТАЛЛИЧЕСКИХ РУД

Изобретение относится к гидрометаллургии, а именно к технологии извлечения германия из шлаков переработки полиметаллических сульфидных руд, содержащих редкие рассеянные металлы. Изобретение может быть использовано в технологии получения редких рассеянных металлов из шлаков медно-свинцово-цинковых сульфидных руд. Способ извлечения германия из растворов вскрытия шлаков переработки полиметаллических руд включает автоклавное вскрытие раствором щелочи концентрацией 20 мас.% при температуре 200÷220°С, затем фильтрацию с отделением раствора германия и цинка от кека. Из раствора проводят селективную сорбцию германия при концентрации щелочи в растворе 2-8 мас.% на слабоосновном анионите. Техническим результатом является селективная сорбция германия на слабоосновном анионите из сильнощелочных растворов, кроме того, возможность попутного получения оксида цинка путем карбонизации раствора цинка и последующей прокалки основной его соли. 2 ил., 2 табл.

Формула изобретения RU 2 326 951 C1

Способ извлечения германия из шлаков переработки полиметаллических руд, включающий вскрытие шлаков с выделением германия в раствор и селективную сорбцию германия из раствора ионитом, отличающийся тем, что вскрытие ведут автоклавным выщелачиванием шлаков раствором щелочи с концентрацией 20 мас.% при температуре 200÷220°С с последующей фильтрацией и отделением раствора, содержащего германий и цинк, и селективную сорбцию германия ведут из отфильтрованного раствора при концентрации щелочи в растворе 2-8 мас.% на слабоосновном анионите.

Документы, цитированные в отчете о поиске Патент 2008 года RU2326951C1

КОРОВИН С.С и др
Редкие и рассеянные элементы
Химия и технология, т.III
- М.: МИСИС, 2003, с.202-214
Способ извлечения германия из растворов сорбцией 1981
  • Егоров Анатолий Михайлович
  • Рувалькаба Луна Хосе Мануэль
SU1002389A1
US 4886648 А, 12.12.1984
KR 20010011575 А, 15.02.2001
Звуковой кинопроектор 1935
  • Кальмансон В.А.
SU49345A1
JP 2001207225 А1, 31.07.2001.

RU 2 326 951 C1

Авторы

Чиркст Дмитрий Эдуардович

Черемисина Ольга Владимировна

Чистяков Алексей Александрович

Жадовский Иван Тарасович

Даты

2008-06-20Публикация

2006-11-20Подача