Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения зданий и сооружений. Изобретение повышает эффективность регулирования теплообмена и температуры воздушной среды (климата) жилого, офисного или производственного помещения с автономным (местным) или централизованным теплоснабжением.
Известен способ регулирования теплообмена помещения путем конвекционной передачи тепловой энергии воздушной среде помещения нагнетаемым предварительно нагретым теплоносителем в теплообменном аппарате-конвекторе (Водяные тепловые сети: Справочное пособие по проектированию. / И.В.Беляйкина, В.П.Витальев, Н.К.Громов и др./ Под ред. Н.К.Громова, Е.П.Шубина. - М.: Энергоатомиздат, 1988. - С.193, 194).
Недостатком способа регулирования теплообмена помещения является низкая эффективность. Это обусловлено узким диапазоном регулирования и низкой энергетической эффективностью (низким коэффициентом полезного действия системы теплоснабжения, использующей известный способ регулирования теплообмена помещения).
Известен способ регулирования теплообмена помещения путем конвекционной передачи тепловой энергии воздушной среде помещения нагнетаемым через вихревую трубу предварительно нагретым теплоносителем в теплообменном аппарате-конвекторе (з. РФ 2003130319 , МКИ F24D 3\00. Система теплоснабжения. \ Шаранов В.И., Сабурзянов Д.Р. - Заявл. 13.10.03, Опубл. 27.05.05. БИМП №15).
Недостатком способа регулирования теплообмена помещения является низкая эффективность. Это обусловлено узким диапазоном регулирования и низкой энергетической эффективностью (низким коэффициентом полезного действия системы теплоснабжения, использующей известный способ регулирования теплообмена помещения).
Известен способ регулирования теплообмена помещения путем конвекционной передачи тепловой энергии воздушной среде помещения предварительно нагретым теплоносителем в теплообменном аппарате-конвекторе, нагрев теплоносителя осуществляется передачей теплоносителю тепловой энергии от солнечного коллектора и топливного и электрического подогревателей (з. РФ 2005113726, МКИ F24D 10\00. Комбинированная автономная система теплоснабжения здания. \ Бубнов В.Г. - Заявл. 04.05.05, Опубл. 10.10.05. БИМП №28).
Данный способ регулирования теплообмена помещения является наиболее близким по технической сущности к заявляемому способу и рассматривается в качестве прототипа.
Недостатком способа регулирования теплообмена помещения является низкая эффективность. Это обусловлено узким диапазоном регулирования и низкой энергетической эффективностью (низким коэффициентом полезного действия системы теплоснабжения, использующей известный способ регулирования теплообмена помещения).
Изобретение направлено на решение задачи повышения эффективности способа регулирования теплообмена помещения, что является целью изобретения.
Указанная цель достигается тем, что в способе регулирования теплообмена помещения путем конвекционной передачи или отвода тепловой энергии от воздушной среды помещения нагнетаемым предварительно нагретым или охлажденным теплоносителем в теплообменном аппарате-конвекторе нагрев теплоносителя осуществляется передачей теплоносителю тепловой энергии от солнечного коллектора и регулируемых топливного и электрического подогревателей, регулируемого механического подогревателя, преобразующего механическую энергию ударно-перемешивающего воздействия на теплоноситель в тепловую энергию, дополнительный нагрев теплоносителя осуществляется путем передачи теплоносителю тепловой энергии грунта, отвод тепловой энергии осуществляется путем передачи тепловой энергии от теплоносителя к грунту.
Существенным отличием, характеризующим изобретение, является повышение эффективности способа регулирования теплообмена помещения. Это обеспечивается возможностями глубокого регулирования температуры воздушной среды помещения как в сторону увеличения, так и в сторону уменьшения относительно температуры окружающей воздушной среды. Обеспечивается как передача, так и отвод тепловой энергии от воздушной среды помещения, что обеспечивает, например, поддержание комфортного климата в помещении независимо от температуры окружающей воздушной среды. Значительно повышается энергетическая эффективность системы теплоснабжения, использующей заявляемый способ регулирования теплообмена помещения, за счет дополнительного использования энергии возобновляемых источников (геотермальная энергия, энергия ветра). Повышается степень автономности системы теплоснабжения за счет использования дополнительных источников тепловой энергии (регулируемый механический подогреватель, источник низкопотенциального тепла), эффективность которых достаточно высока и не зависит, в частности, от времени суток. Использование регулируемых топливного, электрического и механического подогревателей позволяет регулировать теплообмен помещения оптимальным образом, изменять соотношение энергетического вклада каждого из источников с высокой эффективностью в зависимости от температуры окружающей воздушной среды с целью экономии материальных и энергетических ресурсов.
Повышение эффективности способа регулирования теплообмена помещения является полученным техническим результатом, обусловленным новыми действиями в способе регулирования теплообмена помещения и порядком их осуществления, то есть отличительными признаками. Поэтому отличительные признаки заявляемого способа регулирования теплообмена помещения являются существенными.
На чертеже приведена схема системы теплоснабжения, использующей заявляемый способ регулирования теплообмена помещения.
Способ регулирования теплообмена помещения осуществляется следующими действиями. Теплообмен реализуется путем конвекционной передачи или отвода тепловой энергии от воздушной среды помещения нагнетаемым предварительно нагретым или охлажденным теплоносителем в теплообменном аппарате-конвекторе. Нагрев теплоносителя осуществляется передачей теплоносителю тепловой энергии от солнечного коллектора и регулируемых топливного и электрического подогревателей, регулируемого механического подогревателя, преобразующего механическую энергию ударно-перемешивающего воздействия на теплоноситель в тепловую энергию. Дополнительный нагрев теплоносителя осуществляется путем передачи теплоносителю тепловой энергии грунта. Отвод тепловой энергии осуществляется путем передачи тепловой энергии от теплоносителя к грунту.
Система теплоснабжения, использующая заявляемый способ регулирования теплообмена помещения, содержит установленный в помещении теплообменный аппарат-конвектор 1, соединенный с резервуаром 2, заполненным теплоносителем 3, подающим 4 и обратным 5 трубопроводами, а также соединенные по нагреваемому теплоносителю в подающем трубопроводе задвижку 6, солнечный коллектор 7, топливный 8 и электрический 9 подогреватели, а в обратном трубопроводе сетевой насос 10, механический подогреватель, содержащий ветроколесо 11, установленное на валу 12, соединенным через редуктор 13 с валом с закрепленными на нем лопастями 14 и установленным подшипником 15, резервуар помещен в грунт 16.
Система теплоснабжения функционирует следующим образом. Передача тепловой энергии от нагнетаемого сетевым насосом 10 предварительно нагретого теплоносителя 3 воздушной среде помещения и отвод тепловой энергии от воздушной среды помещения нагнетаемому предварительно охлажденному теплоносителю 3 осуществляется в теплообменном аппарате-конвекторе 1 с использованием физического явления конвекции. Поток нагреваемого или охлаждаемого воздуха через теплообменный аппарат-конвектор 1 может проходить как за счет естественной конвекции, так и за счет принудительной продувки с помощью, например, вентилятора. Конструкция теплообменного аппарата-конвектора 1 выполняется на основе любого из известных принципов. Регулирование (ограничение) потока теплоносителя 3 через теплообменный аппарат-конвектор 1 осуществляется задвижкой 6. Теплоноситель 3 в резервуаре 2 имеет температуру грунта 16, так как происходит теплообмен между корпусом резервуара 2 и грунтом 16, в который помещен резервуар 2 с теплоносителем 3. Резервуар 2 с теплоносителем 3, вал 12 с закрепленными на нем лопастями 14, подшипник 15, редуктор 13 и ветроколесо 11 образуют регулируемый механический подогреватель теплоносителя 3. Механический подогреватель преобразует механическую энергии ударно-перемешивающего воздействия лопастей 14 на теплоноситель 3 в тепловую энергию, передаваемую теплоносителю 3. Источником энергии в данном случае является возобновляемый (нетрадиционный) источник (энергия ветра). Энергия ветра преобразуется ветроколесом 11 в энергию механического (вращательного) движения вала 12, которая передается на вал с лопастями 14. Подшипник 15 выполняет роль опорного элемента. Количество передаваемой теплоносителю 3 тепловой энергии определяется скоростью вращения ветроколеса 11 и может регулироваться в широких пределах. При полном останове ветроколеса 11 дополнительного нагрева теплоносителя 3 не происходит и его температура соответствует температуре грунта 16. Нагретый механическим подогревателем теплоноситель 3 далее, при необходимости, дополнительно подогревается в солнечном коллекторе 7, регулируемых топливном 8 и электрическом 9 подогревателях. Указанные элементы 7-9 могут быть реализованы на основе любой из известных конструкций. Регулирование подогревателей 8 и 9 осуществляется таким образом, чтобы расход топлива и электроэнергии (невозобновляемые источники) был минимальным. При полном отключении подогревателей 8 и 9 дополнительного нагрева теплоносителя 3 от указанных подогревателей не происходит. Система теплоснабжения в этом случае использует тепловую энергии только возобновляемых источников энергии (геотермальная энергия, энергия ветра, солнечная энергия). Если температура окружающей воздушной среды превышает требуемую температуру воздушной среды помещения, отвод избыточной тепловой энергии осуществляется теплоносителем 3 от воздушной среды помещения. Избыточная тепловая энергия передается через теплоноситель 3 и стенки резервуара 2 грунту 16. Солнечный коллектор 7, топливный 8, электрический 9 и механический подогреватели при этом либо выводятся из работы, либо функционируют в режиме с минимально возможной передачей от них тепловой энергии теплоносителю 3. В качестве теплоносителя 3 в системе теплоснабжения может использоваться любая жидкость с высокой теплоемкостью (вода, антифриз, синтетическое масло).
Принципиально возможно использование в системе теплоснабжения пара или газообразного теплоносителя. При этом механический подогреватель должен иметь специальную конструкцию.
По сравнению с прототипом при использовании заявляемого способа регулирования теплообмена помещения повышается эффективность системы теплоснабжения. Это обеспечивается возможностями оптимального регулирования климата и глубокого регулирования температуры воздушной среды помещения как в сторону увеличения, так и в сторону уменьшения относительно температуры окружающей воздушной среды. Обеспечивается двунаправленный обмен тепловой энергией, то есть как передача, так и отвод тепловой энергии от воздушной среды помещения, что обеспечивает, например, поддержание комфортного климата в помещении независимо от температуры окружающей воздушной среды. Значительно повышается энергетическая эффективность системы теплоснабжения, использующей заявляемый способ регулирования теплообмена помещения, за счет дополнительного использования энергии возобновляемых источников (геотермальная энергия, энергия ветра). Повышается степень автономности системы теплоснабжения за счет использования дополнительных источников тепловой энергии (регулируемый механический подогреватель, источник низкопотенциального тепла), эффективность которых достаточно высока и не зависит, в частности, от времени суток (солнечный коллектор). Использование регулируемых топливного, электрического и механического подогревателей позволяет регулировать теплообмен помещения оптимальным образом, изменять соотношение энергетического вклада каждого из источников тепловой энергии с высокой эффективностью в зависимости от температуры окружающей воздушной среды с целью экономии материальных и энергетических ресурсов. Повышается надежность системы теплоснабжения за счет взаимного резервирования различных источников тепловой энергии.
название | год | авторы | номер документа |
---|---|---|---|
КОМПЛЕКС АВТОНОМНОГО ЭЛЕКТРОТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ | 2014 |
|
RU2569403C1 |
СИСТЕМА АВТОНОМНОГО ТЕПЛОСНАБЖЕНИЯ И ХОЛОДОСНАБЖЕНИЯ ЗДАНИЙ И СООРУЖЕНИЙ | 2008 |
|
RU2382281C1 |
Способ подогрева топливного газа газоперекачивающего агрегата | 2020 |
|
RU2732864C1 |
СПОСОБ ТЕПЛОХЛАДОСНАБЖЕНИЯ | 2023 |
|
RU2826330C1 |
СПОСОБ ПОДКЛЮЧЕНИЯ НИЗКОПОТЕНЦИАЛЬНОГО ИСТОЧНИКА ТЕПЛОТЫ К СИСТЕМЕ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ | 2024 |
|
RU2826917C1 |
КОНВЕКТОР | 2021 |
|
RU2763635C1 |
Теплофикационная парогазовая установка | 2020 |
|
RU2745470C1 |
СИСТЕМА АВТОНОМНОГО ЭЛЕКТРО- И ТЕПЛОСНАБЖЕНИЯ ЖИЛЫХ И ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ | 2003 |
|
RU2249125C1 |
ГЕОТЕРМАЛЬНАЯ УСТАНОВКА ЭНЕРГОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ | 2023 |
|
RU2810329C1 |
СИСТЕМА КОМБИНИРОВАННОГО СОЛНЕЧНОГО ЭНЕРГОСНАБЖЕНИЯ | 2011 |
|
RU2459152C1 |
Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения зданий и сооружений. Технический результат - повышение эффективности регулирования теплообмена и температуры воздушной среды (климата) помещения. Способ регулирования теплообмена помещения осуществляется путем конвекционной передачи или отвода тепловой энергии от воздушной среды помещения нагнетаемым предварительно нагретым или охлажденным теплоносителем в теплообменном аппарате-конвекторе. Нагрев теплоносителя осуществляется передачей теплоносителю тепловой энергии от солнечного коллектора и регулируемых топливного и электрического подогревателей, регулируемого механического подогревателя, преобразующего механическую энергию ударно-перемешивающего воздействия на теплоноситель в тепловую энергию. Дополнительный нагрев теплоносителя осуществляется путем передачи теплоносителю тепловой энергии грунта. Отвод тепловой энергии осуществляется путем передачи тепловой энергии от теплоносителя к грунту. 1 ил.
Способ регулирования теплообмена помещения путем конвекционной передачи или отвода тепловой энергии от воздушной среды помещения нагнетаемым предварительно нагретым или охлажденным теплоносителем в теплообменном аппарате-конвекторе, нагрев теплоносителя осуществляется передачей теплоносителю тепловой энергии от солнечного коллектора и регулируемых топливного и электрического подогревателей, регулируемого механического подогревателя, преобразующего механическую энергию ударно-перемешивающего воздействия на теплоноситель в тепловую энергию, дополнительный нагрев теплоносителя осуществляется путем передачи теплоносителю тепловой энергии грунта, отвод тепловой энергии осуществляется путем передачи тепловой энергии от теплоносителя к грунту.
Аппарат для закупорки и шуровки шлаковой летки доменной печи | 1935 |
|
SU48394A1 |
Комбинированная ветроустановка для производства тепла | 1982 |
|
SU1079965A1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ, АККУМУЛИРОВАНИЯ И ИСПОЛЬЗОВАНИЯ ВЕТРОВОЙ ЭНЕРГИИ И КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2213255C1 |
Энергоаккумулирующая установка для обогрева теплиц | 1989 |
|
SU1687113A1 |
КРЫШКА ДЛЯ КОНДЕНСАЦИОННЫХ КОТЛОВ | 2014 |
|
RU2647741C1 |
Авторы
Даты
2008-08-10—Публикация
2006-03-06—Подача