Изобретение относится к материалам для изготовления строительных конструкций, обеспечивающих низкий естественный радиационный фон внутри помещений.
Известна композиция для строительных конструкций, эксплуатируемых в подземных сооружениях, требующих защиты от естественной радиации, содержащая серу 25-30%, тонкомолотый наполнитель фракции 0,14 мм 20-25%, песок фракции 0,14-5,0 мм 20-25%, щебень фракции 5-10 мм остальное. В качестве наполнителя, песка и щебня композиция содержит радиационно-чистую ультраосновную породу, например серпентинит или кварцит с содержанием радионуклидов (урана-тория-калия) менее 10-6 г/г (RU, патент №2153714, С1, дата публикации 27.07.2000, автор Волгушев С.В. и др.).
Недостатком известной композиции является применение нетрадиционного вяжущего, особых радиационно-чистых ультраосновных пород серпентинита или кварцита, а также использование специальной технологии, требующей прогрева компонентов до 150°С.
В качестве прототипа принят цементный бетон, содержащий портландцемент, песок горнблендитовый, щебень горнблендитовый фракции 5-20 мм, пластифицирующую добавку и воду, указанный цементный бетон имеет эманирующую способность по радону (ЭСР) 2,9 Бк/кг. (Пересыпкин Е.В. Цементные бетоны и растворы с пониженным радоновыделением. Автореферат на соискание ученой степени кандидата технических наук, Красноярск, 03.05.2005, с.9-20).
Задачей изобретения является получение цементных бетонов с низкой естественной радиоактивностью без снижения их физико-механических свойств.
Для решения поставленной задачи цементный бетон, содержащий портландцемент, песок горнблендитовый, щебень горнблендитовый фракции 5-20 мм, пластифицирующую добавку и воду, дополнительно содержит тонкомолотый доломит при следующем соотношении компонентов, мас.%:
Цементный бетон может содержать в качестве пластифицирующей добавки лигносульфонат технический (ЛСТ). В качестве пластифицирующей добавки могут быть также использованы и другие пластификаторы, например С-3.
Использование в качестве заполнителя основной породы горнблендита с указанным содержанием естественных радионуклидов в сочетании с добавкой тонкомолотого доломита и пластифицирующей добавкой позволяет получить бетон с низкой естественной радиоактивностью и пониженным эманированием. При этом соотношение компонентов и наличие пластифицирующей добавки позволяют получить бетон по обычной технологии, при сохранении прочности.
В качестве материала с низким содержанием естественных радионуклидов используется горнблендит в виде щебня и песка, а также тонкомолотый доломит.
Химический состав горнблендита, мас.%:
SiO2 39,2; Al2О3 17,37; Fe2О3 17,51; MgO 8,87; CaO 10,94; п.п.п. 3,45.
Химический состав доломита, мас.%:
СаО 30,41; MgO 21,86; CO2 47,73.
Образцы готовили следующим образом.
Приготавливали смесь путем перемешивания компонентов, формовали образцы-кубы с размером ребра 150 мм. Приготовление смеси, формование образцов и их испытание осуществляли с учетом требований ГОСТ 27006-86 «Бетоны. Правила подбора состава» и ГОСТ 18105-86 «Бетоны. Правила контроля прочности».
Свойства цемента, горнблендита, доломита и кварцевых заполнителей по содержанию естественных радионуклидов и эманирующей способности по радону (ЭСР) приведены в табл.1.
Из табл.1 видно, что в результате использования заполнителя и минеральной добавки с такими свойствами, а также пластифицирующей добавки становится возможным получение цементного бетона с низкой естественной радиоактивностью и пониженным радоновыделением без снижения прочности.
Примеры составов бетона и их физико-механические свойства приведены в табл.2.
Результаты измерения удельной эффективной активности и снижения эманирующей способности по радону (ЭСР) бетонов приведены в табл.3.
Предлагаемый цементный бетон в сравнении с прототипом обладает пониженным радоновыделением, а также уменьшенным уровнем удельной эффективной активности естественных радионуклидов, без потери прочностных качеств, что позволяет получить строительные конструкции, обладающие низкой естественной радиоактивностью, применение которых обеспечит снижение уровня облучения населения в помещениях.
название | год | авторы | номер документа |
---|---|---|---|
Композиционная сырьевая смесь для изготовления гидротехнических свай | 2021 |
|
RU2764758C1 |
НАПОЛНИТЕЛЬ-ПЛАСТИФИКАТОР ДЛЯ СМЕСЕЙ НА ОСНОВЕ ЦЕМЕНТНЫХ ВЯЖУЩИХ | 2012 |
|
RU2510369C2 |
БЕТОННАЯ СМЕСЬ | 2007 |
|
RU2357940C2 |
Бетонная смесь | 1980 |
|
SU963969A1 |
Бетонная смесь | 2017 |
|
RU2668600C1 |
Высокопрочный мелкозернистый бетон на основе композиционного вяжущего с использованием техногенного материала | 2020 |
|
RU2738882C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ ТЯЖЕЛОГО БЕТОНА, СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ ПОРИЗОВАННОГО БЕТОНА, СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПРИГОТОВЛЕНИЯ ПЕНОБЕТОНА, ДОБАВКА В БЕТОННУЮ СМЕСЬ | 1993 |
|
RU2038340C1 |
КОМПОЗИЦИЯ ДЛЯ ЗАЩИТЫ ОТ ЕСТЕСТВЕННОГО РАДИАЦИОННОГО ФОНА | 1998 |
|
RU2153714C1 |
БЕТОННАЯ СМЕСЬ | 2010 |
|
RU2433973C1 |
Бетонная смесь | 1988 |
|
SU1604786A1 |
Изобретение относится к составу цементного бетона для изготовления строительных конструкций, обеспечивающих низкий естественный радиационный фон внутри помещений. Технический результат - получение цементных бетонов с низкой естественной радиоактивностью без снижения их физико-механических свойств. Цементный бетон содержит, мас.%: портландцемент 15-17, тонкомолотый доломит 4-7, песок горнблендитовый 17-22, щебень горнблендитовый фракции 5-20 мм 45-49, пластифицирующую добавку в пересчете на сухое вещество 0,25-0,3 от мас. цемента, воду остальное. В качестве пластифицирующей добавки может быть использован лигносульфонат технический - ЛСТ. 1 з.п. ф-лы, 3 табл.
Сырьевая смесь для изготовления легкого заполнителя | 1986 |
|
SU1379274A1 |
БЕТОННАЯ СМЕСЬ•|::"^' .' \'j < •- '•>&••'••'• ;»^' '^.•'. '1" •. ' | 0 |
|
SU303301A1 |
Бетонная смесь | 1979 |
|
SU863542A1 |
Бетонная смесь | 1988 |
|
SU1655944A1 |
ПЕРЕСЫПКИН Е.В | |||
Цементные бетоны и растворы с пониженным радоновыделением | |||
Автореферат диссертации на соискание ученой степени кандидата технических наук, Красноярск, 03.05.2005, с.9-20. |
Авторы
Даты
2008-09-10—Публикация
2006-12-20—Подача