ЭКЗОТЕРМИЧЕСКАЯ СМЕСЬ ДЛЯ КЕРАМИЧЕСКОЙ СВАРКИ Российский патент 2008 года по МПК C04B35/65 

Описание патента на изобретение RU2333181C2

Изобретение относится к способам для горячего ремонта кладки промышленных печей методом керамической сварки (наплавки) и может быть использовано в металлургической, коксохимической и других отраслях промышленности.

Керамическая сварка как способ ремонта футеровки и формования наплавленного слоя огнеупорной массы достаточно широко известна и описана в ряде технических решений: GB 1330894 А, 19.09.73. WO 90/03848 А, 19.04.90. SU 726066 А, 05.04.80. SU 1774937 A3, 07.11.92. RU 2027690 С1, 27.01.95. RU 2051879 С1, 10.01.96. GB 2170191 A, 30.07.86.GB 2257136 А, 06.01.93. GB 2213812 А, 23.08.89. US 4792468 А, 20.12.88., RU 2140889 24.11.95, RU 2027690 25.06.90.

Сущность керамической сварки: на нагретую поверхность огнеупора подают в потоке кислорода экзотермическую смесь, содержащую огнеупорные и горючие частицы. Происходит высокотемпературная экзотермическая реакция, расплавление огнеупорного наполнителя, размягчение поверхности ремонтируемой кладки до пластического состояния и их сплавление с образованием монолитного слоя.

Наиболее близким (патент RU 2051879, 02.07.92) к изобретению является экзотермическая смесь для керамической сварки, включающей огнеупорные частицы и горючие частицы, содержащие в том числе частицы алюминия.

Использование в качестве одной из топливных составляющих алюминия, как правило, как обусловлено энергетикой (т.е. технологическими причинами) процесса, так и соображениями преобразования алюминия в оксиды, шпинели и другие соединения как составляющими химической и минералогической структуры наплавленного слоя.

Однако используемые частицы алюминия, как правило, имеют чешуйчатую, пластинчатую и прочую неправильную форму. Использование мелкодисперсного алюминия при горении в составе керамической массы приводит к бурному воспламенению. Высокая температура сварки приводит к оплавлению футеровки, причем процесс идет неустойчиво. Для мелкодисперсных марок вообще характерна рваная чешуйчатая форма частиц. Для таких частиц процесс часто усугубляется агломерационными явлениями - в керамической массе находятся конгломераты алюминия.

Неправильная форма частиц приводит, как показали наши исследования, к плохой адсорбции частиц на поверхности огнеупора, в керамической массе велика доля свободных алюминиевых частиц, которые создают дополнительное сопротивление при движении по трубопроводам и, как следствие, снижается безопасность, особенно при перемешивании в бункере и коммуникациях.

При применении крупнодисперсного алюминия пришлось столкнуться с плохим инициированием реакции и нестабильным горением, из-за неполного оплавления частиц огнеупора пористость достигала 40% и более. Это объясняется тем, что крупные частицы не успевают сгореть полностью.

Изобретение направлено на создание эффективной экзотермической смеси для керамической сварки, которая бы позволила повысить качество ремонта и его безопасность, сократить расход металлических порошков и длительность ремонта.

Это достигается тем, что в предложенной экзотермической смеси для керамической сварки, включающей огнеупорные частицы и горючие частицы, которые содержат также частицы алюминия, причем последние имеют сферическую форму с удельной поверхностью 0,13-0,65 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 12-65%.

Процессы воспламенения и горения металлов имеют особенность - образование окисной пленки на поверхности, препятствующей непосредственному контакту металла с окружающей средой.

Поэтому в большинстве случаев протекание реакции зависит не только от температуры и концентрации окислителя в окружающей металл среде, но и от характеристик окисной пленки. В процессе горения могут происходить такие явления, как изменение структуры, плавление и испарение окисной пленки, конденсация продуктов сгорания, осаждение продуктов реакции на поверхность металла и т.д.

Установлено, что моменту воспламенения предшествуют превращения в окисной пленке, первоначально покрывающей частицу алюминия. К таким превращениям относится растрескивание пленки при нагреве частицы (коэффициент термического расширения Al2O3 примерно в три раза меньше коэффициента термического расширения алюминия). В этом случае трещины заполняются чистым металлом, получающим доступ к окислительной среде.

Вероятность растрескивания окисных оболочек тем выше, чем выше скорость нагрева частиц. Вторым превращением, способствующим увеличению скорости окисления частиц алюминия, является плавление окисной пленки. Этот процесс резко снижает диффузионное сопротивление окисной пленки потоку газообразного окислителя и тем самым интенсифицирует процесс воспламенения частиц.

Собственно говоря, именно алюминий сферической формы в наибольшей степени соответствует этим условиям. Действительно, благодаря правильной форме отношение площади поверхности пленки к объему частицы минимально, что облегчает ее растрескивание и плавление.

Применение частиц сферической формы более безопасно. Сферические частицы алюминия, хорошо адсорбируются на огнеупоре, процесс горения идет ровно и хорошо контролируется.

Частицы сферической формы в меньшей степени склонны к конгломерации, и равномерно распределяясь в объеме смеси, способствуют ее лучшей текучести.

Наши исследования и опыт применения показали, что в наибольшей степени влияет на достижение целей изобретения именно содержание определенной фракции в гранулометрическом составе (грансоставе) алюминия, а именно фракции 0-10 мкм. Собственно говоря, именно эта фракция, а точнее ее связь с удельной поверхностью, является своеобразным регулятором процесса «работы» алюминия.

Обычно удельная поверхность и грансостав связаны друг с другом обратно пропорциональной зависимостью и, как правило, их значения взаимосвязаны. Тем не менее, в ряде случаев, когда это обосновано техническими целями, необходимо создавать искусственную смесь алюминия, добиваясь соотношения, указанного в изобретении.

Крупные частицы нагреваются медленно, за время плавления на поверхности нарастает защитный слой окисла, препятствующий воспламенению. Особенно это относится к частицам алюминия размером более 100 мкм.

Кроме того, адсорбция частиц из-за их размера на поверхности огнеупора затруднена, а при наличии эффекта сегрегации наблюдается расслоение, тем более, что даже самая крупная частица алюминия значительно уступает в размерах частицам огнеупора среднего размера.

Малые частицы расплавляются быстро, еще до заметного окисления их поверхности, горят в диффузионном режиме и быстро нагреваются до плавления за счет конвекции. Количество окисла на поверхности невелико, испарение металла и диффузия его паров от поверхности происходят беспрепятственно. Давление пара металла высоко, поэтому скорость газофазного окисления велика.

Мелкие частицы, обладая великолепной воспламеняемостью и адсорбируемостью, проникают в поры частиц огнеупора и способствуют его эффективному расплавлению.

При использовании сферического алюминия с удельной поверхностью менее 0,13 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет менее 12%, процесс воспламенения идет недостаточно эффективно, особенно в начальной стадии процесса. При небольшой концентрации мелкие частицы, находясь в порах частиц огнеупора, фактически экранируются ими. При этом нужная для стабильного воспламенения минимальная температура печи испытывает тенденцию к повышению, что не является благоприятным фактором.

При использовании сферического алюминия с удельной поверхностью менее 0,13 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия более 65%, процесс воспламенения идет слишком бурно, что небезопасно, а наличие крупных частиц, зачастую с опозданием вступающих в реакцию, приводит к нерациональному перерасходу алюминия.

При использовании сферического алюминия с удельной поверхностью более 0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет более 65%, процесс воспламенения идет очень бурно, что небезопасно и грозит «обратным ударом».

Использование сферического алюминия с удельной поверхностью более 0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет менее 12%, процесс нецелесообразно экономически, поскольку весьма трудно получить смесь именно с таким распределением, даже искусственно. Тем не менее, если задаться такой целью, получить значимый технический эффект не удается.

Технология сварки может быть реализована как с применением общепринятой схемы керамической сварки, когда смесь всех компонентов подается из одного общего бункера, так и с подачей компонентов из разных, отдельных бункеров для каждого компонента (компонентов) и смешением их непосредственно перед использованием. Таким образом можно достичь лучшей воспламеняемости смеси при пониженной температуре печи, подавая сначала алюминий (воспламенение одиночных частиц происходит при температуре 660°С).

Ниже приводятся примеры осуществления изобретения с реализацией указанного назначения.

Пример 1. Экзотермическая смесь для керамической сварки, используемая для ремонта огнеупорной кладки промышленных печей с динасовой кладкой. 1. Плавленный кварц - 80%. Размер частиц от 50 мкм до 1,5 мм. 2. Кремний металлический - 15%. 3. Алюминий 5% с удельной поверхностью 0,40 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 32%. Температура кладки во время ремонта - 800°С. Расход кислорода - 200 л/кг массы.

Пример 2.

Экзотермическая смесь для керамической сварки, используемая для ремонта огнеупорной кладки промышленных печей с магнезиальной футеровкой. 1. Магнезит - 90%, размер частиц от 50 мкм до 1,5 мм. 2. Кремний мет. - 4%, средний размер частиц 7 мкм. 3. Алюминий 6% с удельной поверхностью 0,22 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 55%. Температура кладки во время ремонта - 800°С. Расход кислорода - 330 л/кг массы.

Пример 3.

Экзотермическая смесь для керамической сварки, используемая для ремонта поверхностей тепловых агрегатов с шамотной футеровкой, подверженных интенсивной коррозии. 1. Смесь кварцита и глинозема - 86%, размер частиц не более 0,5 мм. 2. Алюминий 6% с удельной поверхностью 0,50 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 20%. 3. Магний - 4%, средний размер частиц - 50 мкм 4. Кремний мет. - 4%, средний размер частиц 7 мкм. Температура кладки во время ремонта - 1000°С. Расход кислорода 330 л/кг массы.

Пример 4. Экзотермическая смесь для керамической сварки, используемая для ремонта огнеупорной кладки промышленных печей с динасовой кладкой. 1. Плавленный кварц - 80% Размер частиц от 50 мкм до 1,5 мм. 2. Кремний металлический - 15%. 3. Алюминий 5% с удельной поверхностью 0,40 м2/г, а доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 32%. Температура кладки во время ремонта - 700°С. Первоначально в течение 5 секунд подается алюминий из отдельного бункера с удельным расходом 50 г/сек, затем подача алюминия отключается и производится подача смеси из основного бункера. Расход кислорода - 220 л/кг массы.

Похожие патенты RU2333181C2

название год авторы номер документа
СПОСОБ КЕРАМИЧЕСКОЙ СВАРКИ 2005
  • Давыдов Вадим Валентинович
  • Меркулов Владислав Михайлович
  • Милехин Юрий Михайлович
RU2301784C2
ПОРОШКОВАЯ СМЕСЬ ДЛЯ КЕРАМИЧЕСКОЙ СВАРКИ 2006
  • Давыдов Вадим Валентинович
  • Меркулов Владислав Михайлович
  • Милехин Юрий Михайлович
RU2326095C2
СПОСОБ ОБРАЗОВАНИЯ ОГНЕУПОРНОЙ РЕМОНТНОЙ МАССЫ И ПОРОШКОВАЯ СМЕСЬ 1996
  • Стефен Д. Черико
  • Джон Бэйкон
RU2154044C2
ОГНЕУПОРНАЯ СМЕСЬ ДЛЯ КЕРАМИЧЕСКОЙ НАПЛАВКИ 2005
  • Давыдов Вадим Валентинович
  • Меркулов Владислав Михайлович
  • Милехин Юрий Михайлович
RU2289554C1
СПОСОБ РЕМОНТА ОГНЕУПОРНОЙ ФУТЕРОВКИ ПОДА ТЕПЛОВЫХ АГРЕГАТОВ МЕТОДОМ КЕРАМИЧЕСКОЙ НАПЛАВКИ И ТЕРМИТНО-ОГНЕУПОРНАЯ МАССА ДЛЯ КЕРАМИЧЕСКОЙ НАПЛАВКИ 1999
RU2158403C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 1995
  • Жан-Пьер Мейнкенс
  • Жан-Пьер Робер
RU2140889C1
ПОРОШКОВАЯ СМЕСЬ ДЛЯ РЕЗКИ ОГНЕУПОРА (ВАРИАНТЫ) 2010
  • Дябин Виктор Вениаминович
  • Назаров Николай Николаевич
  • Чабан Игорь Андреевич
  • Марченко Евгений Георгиевич
  • Крюков Юрий Васильевич
RU2434829C1
СПОСОБ РЕМОНТА ОГНЕУПОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1989
  • Чарльз Майкл Звосек[Us]
  • Леон Филипп Моттет[Be]
RU2035680C1
СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНОГО ПОКРЫТИЯ НА ГОРЯЧЕЙ ПОВЕРХНОСТИ И ПОРОШКОВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ОГНЕУПОРНОГО ПОКРЫТИЯ 1990
  • Пьер Робин[Be]
  • Леон-Филип Моттэ[Be]
  • Александр Зивковик[Be]
RU2027690C1
СМЕСЬ ДЛЯ НАПЛАВКИ И СВАРИВАНИЯ ШАМОТА И ДИНАСА И СПОСОБ ЕЕ НАНЕСЕНИЯ 2005
  • Дябин Виктор Вениаминович
  • Юрьев Алексей Борисович
  • Полторацкий Леонид Михайлович
  • Ройзен Леонид Семенович
  • Лушников Александр Дмитриевич
  • Крюков Юрий Васильевич
RU2299870C2

Реферат патента 2008 года ЭКЗОТЕРМИЧЕСКАЯ СМЕСЬ ДЛЯ КЕРАМИЧЕСКОЙ СВАРКИ

Изобретение относится к способам для горячего ремонта кладки промышленных печей методом керамической сварки (наплавки) и может быть использовано в металлургической, коксохимической и других отраслях промышленности. Техническим результатом изобретения является создание эффективной смеси для керамической сварки, которая бы позволила повысить качество ремонта и его безопасность, сократить расход металлических порошков и длительность ремонта. Экзотермическая смесь для керамической сварки включает в качестве компонентов огнеупорные частицы и горючие частицы, содержащие в том числе частицы алюминия. Частицы алюминия имеют сферическую форму с удельной поверхностью 0,13-0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 12-65%. Максимальный размер частиц алюминия составляет 100 мкм. 1 з.п. ф-лы.

Формула изобретения RU 2 333 181 C2

1. Экзотермическая смесь для керамической сварки, включающая в качестве компонентов огнеупорные частицы и горючие частицы, содержащие в том числе частицы алюминия, отличающаяся тем, что частицы алюминия имеют сферическую форму с удельной поверхностью 0,13-0,65 м2/г, причем доля фракции 0-10 мкм в гранулометрическом составе алюминия составляет 12-65%.2. Экзотермическая смесь для керамической сварки по п.1, отличающаяся тем, что максимальный размер частиц алюминия составляет 100 мкм.

Документы, цитированные в отчете о поиске Патент 2008 года RU2333181C2

RU 2075213 C1, 10.03.1997
Способ горячего ремонта футеровки 1988
  • Пьер Робин
SU1774937A3
Смесь для наплавки 1986
  • Ильин Юрий Николаевич
  • Баланов Виктор Григорьевич
  • Зелинский Николай Иванович
SU1474153A1
ЗЕМЛЕРОЙНО-ТРАНСПОРТНЫЙ АГРЕГАТ ДЛЯ ПОСЛОЙНОЙ РАЗРАБОТКИ КАРЬЕРА 2005
  • Основин Евгений Владимирович
RU2284415C1

RU 2 333 181 C2

Авторы

Давыдов Вадим Валентинович

Меркулов Владислав Михайлович

Милехин Юрий Михайлович

Даты

2008-09-10Публикация

2006-09-08Подача