КОНИЧЕСКИЙ ПОДШИПНИК СКОЛЬЖЕНИЯ Российский патент 2008 года по МПК F16C21/00 

Описание патента на изобретение RU2336441C1

Изобретение относится к машиностроению и может быть использовано во всех отраслях народного хозяйства в качестве опор валов машин и механизмов, нагруженных радиальными и осевыми нагрузками и повышающих надежность и долговечность машин.

Известна коническая гидростатодинамическая опора, содержащая охватывающую цапфу вала втулку с расположенными на ее внутренней поверхности камерами поперек образующих конуса втулки со смещением относительно средней поперечной ее оси в сторону меньшего основания конуса на величину от 0,15 до 0,2 длины его образующей, а ширина камер выполнена 0,1-0,3 длины образующей конуса [1].

Недостатком известной конической гидростатодинамической опоры является то, что сохраняется возможность срыва смазочной пленки в расширяющейся части опоры, что уменьшает несущую способность поверхности и требует значительных центробежных сил для восстановления смазочного слоя, а также использование смазки большой вязкости, при этом снижается долговечность, надежность и ресурс работы всего подшипникового узла,

Задачей изобретения является повышение надежности и долговечности подшипникового узла, упрощение его конструкции, повышение ресурса работы, устойчивости движения и подавление биений валов и роторов.

Поставленная задача решается с помощью предлагаемого конического гидростатодинамического подшипника скольжения с конической опорной поверхностью, который содержит охватывающую цапфу вала втулку с расположенными на ее внутренней поверхности выточками, причем одна выточка выполнена кольцевой, расположена поперек образующих конуса подшипника со смещением относительно средней поперечной его оси в сторону меньшего основания конуса на величину от 0,25 до 0,35 длины его образующей и к ней через радиальное отверстие подведена под давлением рабочая жидкость, при этом на внутренней поверхности подшипника, расположенной в сторону большего основания от упомянутой кольцевой выточки, выполнены продольные выточки, образующие многоклиновую внутреннюю поверхность подшипника.

Особенности конструкции предлагаемого подшипника поясняются чертежами.

На фиг.1 схематически представлен конический гидростатодинамический подшипник скольжения, продольный разрез; на фиг.2 - поперечный разрез А-А на фиг.1; на фиг.3 - поперечный разрез Б-Б на фиг.1; на фиг.4 - поперечнкй разрез В-В на фиг.1; на фиг.5 - корпус подшипника, продольный разрез; на фиг.6 - вид Д на фиг.5; на фиг.7 - элемент Е на фиг.4.

Предлагаемый конический гидростатодинамический подшипник скольжения представляет собой гидростатодинамическую опору и состоит из корпуса 1 в виде втулки с внутренней конической поверхностью и вала 2.

Корпус 1 охватывает цапфу вала 2 и на внутренней поверхности имеет продольные 3 и поперечную 4 выточки. Выточка 4 выполнена кольцевой, расположена поперек образующих конуса подшипника со смещением относительно средней поперечной его оси в сторону меньшего основания конуса на величину от 0,25 до 0,35 длины его образующей L и к ней через радиальное отверстие 5 подведена под давлением рабочая жидкость. Эта внутренняя поверхность, расположенная между торцом меньшего основания конуса и кольцевой выточкой 4, является гладким гидростатодинамическим подшипником скольжения.

На внутренней поверхности подшипника, расположенной в сторону большего основания от кольцевой выточки 4, выполнены продольные выточки 3, имеющие клиновой профиль в поперечном сечении и образующие многоклиновую внутреннюю поверхность подшипника. Эта часть корпуса, расположенная между торцом большего основания конуса и кольцевой выточкой 4, является многоклиновым гидростатодинамическим подшипником скольжения.

Предлагаемый конический гидростатодинамический подшипник работает следующим образом.

При переходных режимах работы (пуск, останов), когда частота вала невелика, осевая и радиальная нагрузка передается на корпус через многоклиновой подшипник скольжения, в смазочном слое рабочего зазора которого возникает избыточное давление и вал всплывает благодаря свободному проходу рабочей жидкости по продольным выточкам, имеющим клиновой профиль в поперечном сечении.

При увеличении частоты вращения вала в смазочном слое рабочего зазора гладкого подшипника скольжения также возникает избыточное давление, оказывающее всплывающее воздействие на вал.

Таким образом, гладкий подшипник скольжения обеспечивает большую грузоподъемность, а многоклиновый - большую устойчивость.

Предлагаемая конструкция позволяет использовать рабочую жидкость с малой вязкостью для смазки опоры, что исключает применение подшипников качения, имеющих ограниченный ресурс и требующих смазки минеральными маслами.

Уменьшение вязкости смазки приводит к уменьшению несущей способности, а следовательно, к уменьшению надежности работы подшипника. Эти особенности ликвидируют указанный недостаток и позволяют при сравнительно невысоких давлениях смазки, поступающей в кольцевую выточку, обеспечить необходимые величины несущей способности.

Одним из недостатков известной конической гидростатодинамической опоры [1] является ограниченная виброустойчивость. Заменяя гладкую поверхность многоклиновой, можно радикально изменить характеристики опоры: снижается несущая способность, но при этом резко возрастает устойчивость движения вала благодаря возникновению дополнительных гидродинамических клиньев в ненагруженной зоне. При правильно подобранном давлении подачи смазочного материала и геометрических характеристиках многоклиновые подшипники способны почти полностью подавлять вихрь и биение валов-роторов.

Высокий уровень несущей способности и вибрационной устойчивости может обеспечить предлагаемый подшипник, включающий многоклиновый и гладкий конические участки. Данную конструкцию можно в определенной мере рассматривать как комбинацию подшипника и уплотнения. В этом случае подача смазочного материала осуществляется с клинового торца, а гладкая коническая часть выполняет функции щелевого уплотнения. Этот вид опор целесообразно использовать в насосных агрегатах, в которых смазка и охлаждение подшипниковых узлов проводятся рабочими телами и возможно перетекание среды между полостями высокого и низкого давлений.

Предлагаемый конический гидростатодинамический подшипник скольжения повышает надежность и долговечность опорного узла путем разделения и дублирования функций гладкого и многоклинового подшипников скольжения, упрощает его изготовление и эксплуатацию благодаря простоте конструкции и повышает ресурс работы.

Источники информации

1. А.с. SU №1191638, МПК F16C 21/00. Коническая гидростатодинамическая опора. И.Я.Токарь и др. Заявка 3786390/25-27, 04.09.84, 15.11.85 - прототип.

Похожие патенты RU2336441C1

название год авторы номер документа
КОМБИНИРОВАННАЯ ГИБРИДНАЯ ОПОРА 2007
  • Степанов Юрий Сергеевич
  • Савин Леонид Алексеевич
  • Корнеев Андрей Юриевич
  • Поляков Роман Николаевич
  • Афанасьев Борис Иванович
RU2346192C1
Подшипниковый узел с порошковой смазкой 2023
  • Юша Владимир Леонидович
  • Бусаров Сергей Сергеевич
  • Третьяков Александр Валерьевич
  • Райковский Николай Анатольевич
RU2800514C1
Гидростатодинамический подшипник 1990
  • Першин Александр Васильевич
SU1754952A1
ШПИНДЕЛЬ ЗАБОЙНОГО ДВИГАТЕЛЯ 2010
  • Сорокин Владимир Романович
RU2433241C1
ПРИВОДНАЯ ЧАСТЬ НАСОСА 2006
  • Авилкин Юрий Михайлович
RU2324069C1
КОМБИНИРОВАННАЯ ОПОРА 2003
  • Поляков Р.Н.
  • Соломин О.В.
RU2243425C2
КОНИЧЕСКИЙ ЛЕПЕСТКОВЫЙ ПОДШИПНИК СКОЛЬЖЕНИЯ 2010
  • Савин Леонид Алексеевич
  • Корнеев Андрей Юрьевич
  • Сытин Антон Валерьевич
  • Ярославцев Михаил Михайлович
RU2437005C2
Подшипник скольжения 1982
  • Коханов Семен Григорьевич
  • Баткис Григорий Семенович
SU1083001A1
СКОРОСТНАЯ КАМНЕВАЯ ОПОРА СКОЛЬЖЕНИЯ ЗАКРЫТОГО ТИПА ДЛЯ ОСЕЙ ПРИБОРОВ 1996
  • Андреева Ольга Георгиевна
  • Вечтомов Виталий Михайлович
RU2112267C1
Опора скольжения 1981
  • Зеленцов Владимир Всеволодович
  • Зеленцов Александр Владимирович
SU1016575A1

Иллюстрации к изобретению RU 2 336 441 C1

Реферат патента 2008 года КОНИЧЕСКИЙ ПОДШИПНИК СКОЛЬЖЕНИЯ

Изобретение относится к машиностроению и может быть использовано во всех отраслях народного хозяйства в качестве опор валов машин и механизмов, нагруженных радиальными и осевыми нагрузками и повышающих надежность и долговечность машин. Конический гидростатодинамический подшипник скольжения с конической опорной поверхностью содержит охватывающую цапфу вала втулку с расположенными на ее внутренней поверхности выточками, причем одна выточка выполнена кольцевой, расположена поперек образующих конуса подшипника со смещением относительно средней поперечной его оси в сторону меньшего основания конуса на величину от 0,25 до 0,35 длины его образующей и к ней через радиальное отверстие подведена под давлением рабочая жидкость. На внутренней поверхности подшипника, расположенной в сторону большего основания от упомянутой кольцевой выточки, выполнены продольные выточки, образующие многоклиновую внутреннюю поверхность подшипника. Предлагаемый конический подшипник скольжения повышает надежность и долговечность опорного узла путем разделения и дублирования функций гладкого и многоклинового подшипников скольжения, упрощает его изготовление и эксплуатацию благодаря простоте конструкции и повышает ресурс работы. 7 ил.

Формула изобретения RU 2 336 441 C1

Конический гидростатодинамический подшипник скольжения с конической опорной поверхностью, содержащий охватывающую цапфу вала втулку с расположенными на ее внутренней поверхности выточками, отличающийся тем, что одна выточка выполнена кольцевой, расположена поперек образующих конуса подшипника со смещением относительно средней поперечной его оси в сторону меньшего основания конуса на величину от 0,25 до 0,35 длины его образующей и к ней через радиальное отверстие подведена под давлением рабочая жидкость, при этом на внутренней поверхности подшипника, расположенной в сторону большего основания от упомянутой кольцевой выточки, выполнены продольные выточки, образующие многоклиновую внутреннюю поверхность подшипника.

Документы, цитированные в отчете о поиске Патент 2008 года RU2336441C1

Коническая гидростатодинамическая опора 1984
  • Токарь Иосиф Яковлевич
  • Торубара Александр Михайлович
  • Хайсаров Ромазан Закирьянович
  • Кантемир Анатолий Дмитриевич
SU1191638A1
GB 1262852 A, 09.02.1972
Делитель тока между параллельными вентильными ветвями параллельно включенных статических преобразователей 1984
  • Гольдштейн Михаил Ефимович
  • Сенигов Павел Николаевич
SU1221700A1
GB 1174628 A, 17.12.1969.

RU 2 336 441 C1

Авторы

Степанов Юрий Сергеевич

Савин Леонид Алексеевич

Корнеев Андрей Юрьевич

Стручков Александр Александрович

Поляков Роман Николаевич

Афанасьев Борис Иванович

Даты

2008-10-20Публикация

2007-04-16Подача