Изобретение относится к двигателестроению, а более конкретно к двигателям внутреннего сгорания (ДВС), преимущественно к автомобильным двигателям с электрическим управлением подачей топлива.
Известен способ регулирования мощности бензинового ДВС путем изменения с помощью дроссельной заслонки количества воздуха, подаваемого в цилиндры двигателя [1]. В известном способе измеряют количество расходуемого воздуха и, в зависимости от полученного результата измерения этого и ряда других параметров, регулируют подачу топлива. Реализация известного способа требует использования датчика массового расхода воздуха, который помимо усложнения системы управления вносит свойственную ему погрешность в процесс регулирования [2]. Эта погрешность столь велика, что в современных автомобилях в процесс управления подачей топлива вводится система обратной связи по составу отработавших газов.
Известен способ регулирования мощности ДВС Valvetronic [3], при котором регулируют количество подаваемого в цилиндры воздуха путем изменения высоты подъема клапанов, что делает ненужной дроссельную заслонку и уменьшает потери мощности на впуске. Однако, несмотря на это уменьшение, потери мощности двигателя, связанные с преодолением разрежения воздуха в цилиндре на такте всасывания, имеют место. Кроме того, частичное цикловое наполнение цилиндров в большинстве режимов работы двигателя приводит к ухудшению его динамических свойств.
Сущность предлагаемого способа регулирования мощности двигателя внутреннего сгорания состоит в том, что количество подаваемого в цилиндры воздуха не ограничивают, при этом измеряют период обращения коленчатого вала, в электронном устройстве сравнивают его с заданным значением и, при увеличении периода выше установленного значения, производят подачу топлива. При уменьшении периода обращения коленчатого вала ниже установленного значения подачу топлива прекращают. Количество подаваемого топлива определяют известными способами, исходя из условия постоянства объема подаваемого воздуха, который в предлагаемом способе равен рабочему объему цилиндра и известен с высокой точностью. При известном объеме циклового расхода воздуха Vц масса воздуха mцв может быть определена из соотношений
mцв=Vц×d,
где
d=(343×1,03×Р)/(273+t) - плотность воздуха, кг/м3;
Р - давление воздуха в кг/см2;
Т - температура воздуха, °С.
Исходя из стехиометрического соотношения цикловой расход топлива mцт составит:
mцт=mцв/14,1.
Изменение скорости вращения коленчатого вала производят изменением задаваемого значения периода обращения коленчатого вала и этим регулируют мощность ДВС.
В силу того, что в предлагаемом способе цикловое наполнение цилиндров постоянно, имеется возможность реализовать максимальный крутящий момент во всем диапазоне угловых скоростей коленчатого вала.
Кроме того, в предлагаемом способе имеется возможность введения управляемой декомпрессии цилиндров в тех циклах, когда топливо в них не подается. Указанная возможность позволяет исключить потери мощности на сжатие воздуха в холостых циклах работы двигателя. Очевидно, что при торможении двигателем такая декомпрессия производиться не должна.
На фиг.1 представлена функциональная схема электронного устройства, реализующего предлагаемый способ.
На фиг.2 приведены временные диаграммы сигналов, поясняющие работу электронного устройства.
Устройство, реализующее предлагаемый способ регулирования мощности ДВС, состоит из датчика положения коленчатого вала 1, интегрирующего устройства со сбросом 2, компаратора 3, ждущего мультивибратора 4, коммутатора 5 и работает следующим образом.
Датчик положения коленчатого вала 1 вырабатывает импульсы, соответствующие положению поршня 1-го цилиндра в верхней мертвой точке. Эти импульсы управляют работой интегрирующего устройства со сбросом, которое вырабатывает пилообразное напряжение 7, амплитуда которого пропорциональна периоду обращения коленчатого вала. С выхода интегрирующего устройства 2 пилообразное напряжение 7 поступает на один из входов компаратора 3, на другой вход которого подается пороговое напряжение Uпор, соответствующее требуемому значению периода обращения коленчатого вала. Если период обращения коленчатого вала больше требуемого значения, то амплитуда пилообразного напряжения превышает пороговое напряжение Uпор, так, как это показано на левой части фигуры 2. При этом на выходе компаратора 3 возникают импульсы 8, которые запускают ждущий мультивибратор 4. При наличии импульсов запуска 8 ждущий мультивибратор 4 вырабатывает импульсы 9 открывания топливных форсунок. Коммутатор 5, управляемый датчиком положения коленчатого вала 1, распределяет импульсы 9 открывания на топливные форсунки соответствующих цилиндров. Когда в результате сжигания поданного топлива период обращения коленчатого вала уменьшится, соответственно уменьшится амплитуда пилообразного напряжения 7. Это уменьшение будет продолжаться до тех пор, пока амплитуда пилообразного напряжения 7 не станет меньше порогового напряжения Uпор, так, как это показано в правой части фигуры 2. Таким образом, после того как период обращения коленчатого вала снизится до требуемого установленного значения, на выходе компаратора перестанут вырабатываться запускающие импульсы 8, и соответственно импульсы 9 открывания топливных форсунок, вырабатываемые ждущим мультивибратором 4. Подача топлива прекратится, период обращения коленчатого вала двигателя под действием нагрузок начнет увеличиваться и процесс регулирования повторится. При этом количество топлива, подаваемого в каждом рабочем цикле, определяется длительностью τ импульсов 9 открывания топливных форсунок и может корректироваться по результатам измерения других параметров, таких как температура и давление атмосферного воздуха, условия работы двигателя и т.п.
Очевидно, что при прекращении подачи топлива можно не производить зажигание в соответствующих цилиндрах. Синхронное, с прекращением подачи топлива, прекращение зажигания позволит увеличить срок службы свечей зажигания.
Для экспериментальной проверки предлагаемого способа был использован имевшийся в наличии двигатель ВАЗ 21011, у которого был удален карбюратор с дроссельной заслонкой, а вместо него была установлена система центрального впрыска топлива без дроссельной заслонки, управляемая электронным устройством, аналогичным тому, что приведено на схеме фиг.1. В эксперименте удалось стабилизировать обороты двигателя и осуществить их плавное регулирование в пределах от 600 до 5000 оборотов в минуту. Точность срабатывания электронного устройства составляла ±0,1 Гц.
Литература
1. УДК621.43.(075) Двигатели внутреннего сгорания. Системы поршневых и комбинированных двигателей / Под. ред. А.С.Орлина и М.Г.Крутова. - М.: Машиностроение, 1985, с.112-115.
2. УДК.629.113.5.014 Гирявец А.К. Теория управления автомобильным бензиновым двигателем. - М.: Стройиздат, 1997, с.60-63.
3. Долой заслонку! // «За рулем» 2006, №8, с.228.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕГУЛИРОВАНИЯ МОЩНОСТИ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2011 |
|
RU2459968C1 |
СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ ТОПЛИВА И КАРБЮРАТОР | 1994 |
|
RU2074971C1 |
ПРИЕМОПЕРЕДАТЧИК | 2011 |
|
RU2488220C1 |
ШИРОКОПОЛОСНАЯ ДВУХПОЛЯРИЗАЦИОННАЯ АНТЕННА | 2013 |
|
RU2557478C2 |
СПОСОБ ЗАЩИТЫ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ ОТ РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ | 2001 |
|
RU2190303C1 |
МИКРОВОЛНОВЫЙ ПАСТЕРИЗАТОР ПИЩЕВЫХ ЖИДКОСТЕЙ, СТОЧНЫХ ВОД И ЖИДКИХ ОРГАНИЧЕСКИХ УДОБРЕНИЙ | 2018 |
|
RU2701809C1 |
УСТРОЙСТВО ДЛЯ МИКРОВОЛНОВОЙ ОБРАБОТКИ СЫПУЧИХ И ДЛИННОМЕРНЫХ МАТЕРИАЛОВ | 2005 |
|
RU2291596C1 |
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ЗАГРЯЗНЕНИЯ И КАЧЕСТВА РАСПЫЛЕНИЯ ТОПЛИВА ЭЛЕКТРОМАГНИТНЫХ ФОРСУНОК | 2018 |
|
RU2692179C1 |
Комбинированная силовая установка с паросиловым агрегатом | 2021 |
|
RU2761259C1 |
Способ управления двигателем внутреннего сгорания транспортного средства | 1988 |
|
SU1534197A1 |
Изобретение относится к регулированию двигателей внутреннего сгорания, преимущественно поршневых автомобильных двигателей с электрическим управлением подачей топлива. Техническим результатом является повышение эффективности регулирования. Сущность изобретения заключается в том, что количество подаваемого в цилиндры воздуха не ограничивают, при этом измеряют период обращения коленчатого вала и в электронном устройстве сравнивают его с заданным значением. При превышении периодом обращения коленчатого вала заданного значения осуществляют подачу топлива в стехиометрическом соотношении с известным объемом воздуха, который в предлагаемом способе постоянен и равен рабочему объему цилиндра. При уменьшении периода обращения коленчатого вала ниже заданного значения подачу топлива и зажигание прекращают, одновременно с этим производят управляемую декомпрессию цилиндров в холостых циклах работы двигателя. При необходимости торможения декомпрессию цилиндров в холостых циклах не производят. Предлагаемый способ регулирования мощности позволяет отказаться от датчиков массового расхода воздуха и улучшает динамические характеристики двигателей внутреннего сгорания. 1 з.п. ф-лы, 2 ил.
Устройство для управления впрыском топлива в двигатель внутреннего сгорания | 1985 |
|
SU1291711A1 |
Двигатель внутреннего сгорания | 1986 |
|
SU1495473A1 |
US 5934257 A, 10.08.1999 | |||
Способ регулирования мощности двигателя внутреннего сгорания | 1987 |
|
SU1615417A1 |
Способ регулирования двигателя внутреннего сгорания и устройство для его осуществления | 1983 |
|
SU1190074A1 |
УСТРОЙСТВО ДЛЯ РАСПОЗНАВАНИЯ ФАЗ ГАЗОРАСПРЕДЕЛЕНИЯ | 1999 |
|
RU2230210C2 |
СПОСОБ РЕГУЛИРОВАНИЯ МОЩНОСТИ ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1994 |
|
RU2135802C1 |
Авторы
Даты
2009-01-27—Публикация
2007-01-11—Подача