СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕЙ БИОЛОГИЧЕСКИ АКТИВНОЙ ДОБАВКИ К ПИЩЕ Российский патент 2009 года по МПК A23L1/30 A23L1/304 

Описание патента на изобретение RU2345574C2

Предлагаемое изобретение относится к микробиологической промышленности и биотехнологии, а именно к биологически активным добавкам на основе молочного сырья и железа.

Известно, что дефицит железа приводит к повышению ломкости волос и ногтей, воспалению органов рото- и носоглотки, изменению характера вкусовых ощущений, снижению функции щитовидной железы и активности иммунной системы, повышению восприимчивости организма к различным инфекциям и, как следствие, к развитию железодефицитной анемии (ЖДА).

Железодефицитные состояния по-прежнему остаются актуальной, и во многих отношениях не решенной проблемой современной медицины. Для профилактики и лечения железодефицитных состояний принимаются препараты, содержащие железо. В медицинской и ветеринарной практике железосодержащие препараты применяются внутрь и парентерально (внутримышечно или внутривенно).

Препараты для парентерального применения представлены комплексными соединениями - декстраном, декстрином, сахаратом, глюконатом и сорбитолом (см.: Чернов В.М. «Применение внутримышечных препаратов железа в клинической практике» // Гематология и трансфузиология, 2004, т.49, № 3, с.27).

Имеются данные, что многократное введение декстрана железа в один и тот же участок мышцы может способствовать канцерогенезу. Кроме того, ионные парентеральные ферропрепараты вызывают достаточно серьезные побочные проявления: боль в месте введения, вкус железа во рту, снижение аппетита, лихорадку, крапивницу, артралгии, астму, тошноту и расстройства кровообращения (см.: «Дефицит железа у детей: проблемы и решения» Т.В.Казаков и др. // Consillium-Medicum приложение, 2002, т.4, № 3, с.15-17). Глюконат железа для внутривенного введения настолько токсичен, что может применяться только в режиме низких доз. Декстранат железа имеет невысокий, но значительный риск анафилаксии (см.: Чернов В.М. «Применение внутримышечных препаратов железа в клинической практике» // Гематология и трансфузиология, 2004, т.49, № 3, с.27).

Препараты для внутреннего применения представлены сульфатом железа (актиферрин, сорбифер дурулес, конферон, тардиферон, ферроплекс), хлоридом железа (гемофер, сироп алоэ с железом), глюконатом железа (апаферроглюконат), фумаратом железа (ферретоаб), а также препаратом трехвалентного железа - мальтофером (см.: Воробьев П.А. Анемичный синдром в клинической практике. - М.: Ньюдиамед, 2001. - 168 с.).

Лечение пероральными препаратами железа, чаще всего солевыми и двухвалентными, эффективно, просто, дешево, но ограничено побочными эффектами, плохой всасываемостью солевых препаратов железа.

Известен железосодержащий препарат Ферпос для профилактики алиментарной анемии, содержащий катионное двухвалентное железо с концентрацией 1,0±0,15% (см.: Заявка РФ № 92006763, кл. А61K 35/24, 1992 г.).

Однако данный препарат имеет невысокую биологическую активность за счет низкого содержания железа.

Известен железосодержащий препарат Ферокс для профилактики алиментарной анемии с концентрацией двухвалентного железа 1,0±0,15% (см.: Заявка РФ № 92006855, кл. А61K 33/26, 1995).

Однако препарат также имеет невысокую биологическую активность за счет низкого содержания железа.

Недостатком вышеназванных известных решений является то, что железо в этих препаратах, хоть и находится в двухвалентной форме, но в процессе усвоения может подвергнуться быстрому химическому окислению, что впоследствии приведет к образованию нерастворимого Fe3+, который не усваивается организмом, накапливается в нем, вызывая тем самым, эффект отравления.

Связывать железо и оставлять его в усвояемой форме способны аминокислоты. Дело в том, что ионы железа, находясь в оболочке аминокислоты, не требуют дополнительных превращений в организме, они являются готовыми к использованию и транспортировке клетками эпителия тонкой кишки, где происходит основной процесс усвоения. Такой процесс называется «хелатированием». Употреблять нехелатированные минеральные вещества (в том числе и железо) означает подвергать организм еще большей нагрузке, так как он пытается выделить дополнительные аминокислоты, необходимые для процесса хелатирования. Другими словами, организм будет пытаться самостоятельно хелатировать минеральные вещества, но этим перегрузит систему и растратит те аминокислоты, которые должны использоваться в других процессах.

Наиболее близким по технической сущности к заявляемому изобретению является получение биологически активной добавки к пище "Magni Fe++", содержащей 20 мг двухвалентного железа в виде аминокислотного хелата (см.: Шарманов Т.Ш. Отчет центра экспертизы БАД по клинической апробации биологически активной добавки "Magni Fe++", 2003 г.).

Недостатком данного препарата является то, что при его изготовлении не предусмотрена подготовка желудочно-кишечного тракта к оптимальному усвоению железа.

Установлено, что существует причинная связь между слизистой желудка и дефицитом железа, что имеет непосредственное отношение к патогенезу железодефицитного состояния. У подавляющего числа больных ЖДА при биопсии слизистой оболочки желудка обнаружены морфологические изменения от поверхностного гастрита до глубокой атрофии железистого аппарата. В настоящее время считается, что морфофункциональные изменения слизистой оболочки желудка при ЖДА носят вторичный характер и являются не причиной, а следствием железодефицита (см.: "Способ лечения железодефицитной анемии" патент RU 2272641 С2, 27.03.2006 Бюл. №9).

С учетом имеющихся недостатков железосодержащих препаратов поиск новых биологически активных добавок для профилактики и лечения железодефицита остается актуальным.

Задачей настоящего изобретения является создание биологически активной добавки к пище, обогащенной усвояемым хелатированным железом, на основе пропионовокислых бактерий для восполнения недостатка железа в организме и профилактики ЖДА.

Технический результат настоящего изобретения состоит в повышении усвояемости железа организмом, сокращении срока усвоения за счет подготовки пропионовокислыми бактериями пищеварительного тракта к приему биодоступного хелатного железа, увеличении количества жизнеспособных клеток пропионовокислых бактерий.

Проведенные исследования по данной проблеме не выявили способов, идентичных предложенному.

Указанный технический результат достигается тем, что согласно изобретению, в приготовленную питательную среду на основе осветленной творожной сыворотки вносят хелатирующий агент в виде раствора казеиновых фосфопептидов в количестве 15-20% от объема питательной среды и сульфат железа в количестве 0,35-0,45 мг/мл, среду стерилизуют, охлаждают, вносят 3-5% активизированных культур пропионовокислых бактерий и проводят культивирование.

Существенными отличительными признаками заявляемого способа являются: использование в качестве хелатирующего агента раствора казеиновых фосфопептидов и культивирование среды активизированными культурами пропионовокислых бактерий. Железо в питательную среду вводится в виде двухвалентной соли (FeSO4).

Пропионовокислые бактерии (ПКБ) являются представителями нормальной микрофлоры желудочно-кишечного тракта человека и животных, обладают морфокинетическим действием, образуют ферменты, участвующие в метаболизме белков, углеводов, липидов и нуклеиновых кислот, продуцируют биологически активные соединения, в частности витамин В12, выполняют иммуногенную и антимутагенную функцию, а также участвуют в детоксикации экзо- и эндогенных токсических агентов. Пропионовокислые бактерии положительно влияют на пристеночное пищеварение, абсорбируя промежуточные метаболиты, в состав которых могут входить и микроэлементы, конкурирующие с железом при всасывании (см.: Воробьева Л.И. Пропионовокислые бактерии. М.: Изд-во МГУ, 1995. 380 с). Поэтому использование ПКБ в заявляемом способе позволит подготовить слизистую оболочку желудочно-кишечного тракта и улучшить всасывание ионов железа и тем самым ускорит темп нормализации гематологических показателей.

В качестве инокулята в заявленном способе использовались активизированные культуры пропионовокислых бактерий разных штаммов: Propionibacterium freudenreichii subsp.shermanii типа AC-2503, Propionibacterium freudenrichii subsp.fredenreichii типа AC-2500 и Propionibacterium cyclohexanicum Kusano типа AC-2260, полученных из фонда BKM Института Биохимии и Физиологии Микроорганизмов (Москва).

Авторами было исследовано влияние различных доз сульфата железа на биохимическую активность указанных микроорганизмов с целью использования их при производстве железосодержащей БАД. Для оценки влияния железа на рост пропионовокислых бактерий сравнивали количество жизнеспособных клеток по окончании процесса культивирования, а также удельные скорости роста культур в каждом варианте опыта. За контроль взята среда без добавления сульфата железа. Результаты представлены в таблице и на фиг.1.

Влияние железа на рост пропионовокислых бактерийШтаммКоличество жизнеспособных клеток (КОЕ/см3) при добавлении FeSO4 в питательную среду в следующих количествах:контроль0,15 мг/мл0,25 мг/мл0,35 мг/мл0,45 мг/мл0,55 мг/млPropionibacterium freudenrichii subsp.fredenreichii АС-25003·10102·10103·10112·10111·10111·1010Propionibacterium cyclohexanicum Kusano AC-22601·10103·10102·10113·10114·10113·1010Propionibacteriumfreudenreichii subsp.shermanii AC-25033·10104·10102·10113·10111·10123·1010

Из данных таблицы видно, что при концентрации железа в среде 0,25-0,45 мг/мл количество жизнеспособных клеток пропионовокислых бактерий повышается и составляет в среднем 2,5·1011 КОЕ/см3, что на порядок выше, чем в среде без железа (см. контроль). Поскольку количество жизнеспособных клеток пропионовокислых бактерий почти во всех опытных образцах было выше контрольного, можно утверждать о возможности интенсификации микробиологического роста ПБК посредством сульфата железа.

Из фиг.1 видно, что повышение концентрации FeSO4 в среде до 0,35 мг/мл для P. freudenrichii subsp. fredenreichii АС-2500 и 0,45 мг/мл для остальных штаммов приводит к значительному увеличению скорости роста (почти в 2 раза). Стимулирующее действие сульфата железа вероятно связано с тем, что при таких концентрациях ионы Fe2+ создают в среде низкий окислительно-восстановительный потенциал - необходимое условие развития пропионовокислых бактерий, а также с детоксикацией продуктов метаболизма кислорода. Увеличение концентрации сульфата железа в среде до 0,55 мг/мл приводит к замедлению скорости роста культур, можно предположить, что происходит перенасыщение среды ионами железа.

Следует отметить, что наибольшее стимулирующее воздействие сульфат железа проявил по отношению к Propionibacterium freudenreichii subsp.shermanii типа AC-2503.

С учетом удовлетворения суточной потребности взрослого человека в железе, количество вносимого в питательную среду FeSO4 установлено из расчета 0,35-0,45 мг/мл, что, при дозированном приеме добавки составляет 30% от суточной нормы потребления железа. При этом наблюдается активный рост пропионовокислых бактерий (см. фиг.1 и табл.1).

Для предотвращения окисления железа и сохранения его в усвояемой двухвалентной форме в заявленном способе используют раствор казеиновых фосфопептидов.

Казеиновые фосфопептиды (CPPS) - это фосфолированные пептиды, образующиеся из казеинов коровьего молока при их переваривании пищеварительными протеинадами. CPPS способны связывать минеральные вещества и поддерживать их в растворимом состоянии в щелочной зоне рН тонкой кишки. Кроме того, казеиновые фосфопептиды устойчивы к интенсивному протеолизу и накапливаются в дистальном отделе тонкой кишки, где усиливают пассивный транспорт минеральных элементов в циркуляцию. Способность CCPS связывать (хелатировать) железо обусловлена присутствием в структуре входящих аминокислот анионного гидрофильного участка (см.: Гаппаров М.М, Стан Е.Я. Влияние казеиновых фосфопептидов на биодоступность алиментарных минералов // Вопросы питания, № 6, 2003, с.41-44).

Авторами изучено влияние различного количества в среде раствора CPPS на биодоступность железа (сохранение его в растворенной, хелатной, двухвалентной форме). За процессом связывания железа следили по количеству железа, которое не подвергнулось химическому окислению, а осталось в усвояемой, двухвалентной форме от первоначальной дозы внесения. За контроль взята среда без добавления CPPs. Результаты исследований представлены на фиг.2.

Как видно из фиг.2, наличие в среде казеиновых фосфопептидов значительно способствует хелатированию железа и сохранению его в виде растворимых ионов Fe2+. Так, в средах, содержащих CPPs, в органической растворенной форме осталось почти в 4 раза больше вносимого сульфата железа, чем в среде, не содержащей фосфопептиды. Следовательно, железо в таких БАДах усвоится намного лучше и основное его количество останется в тканях организма.

Следует отметить, что в зависимости от дозы вносимого FeSO4, казеиновые фосфопептиды в средах проявили различную способность связывать железо. Так, было установлено, что добавление в питательную среду 0,45 мг/мл FeSO4 и 15-20% раствора казеиновых фосфопептидов позволит оставить в усвояемой форме до 70-80% вносимого сульфата железа; тогда как при внесении 10% CPPs в усвояемой форме остается только 45-50% вносимого FeSO4. Это объясняется тем, что молекулы CPPs могут связывать только ограниченное число молекул железа, то есть количество ионизированного (свободного) минерала не должно превышать количество имеющихся анионных гидрофильных участков аминокислот казеиновых фосфопептидов.

В качестве основы питательной среды в заявленном способе выбрана осветленная творожная сыворотка, которая является сравнительно дешевым вторичным сырьем при производстве творога. Кроме того, творожная сыворотка содержит необходимые для культивирования пробиотических микроорганизмов факторы роста: аминокислоты, витамины и микроэлементы.

Таким образом, именно выявленная совокупность отличительных признаков изобретения, заключающаяся в ведении в питательную среду раствора казеиновых фосфопептидов и культивировании среды активизированными культурами пропионовокислых бактерий, влияют на достижение технического результата, выражающегося в повышении усвояемости железа организмом, сокращении срока усвоения за счет подготовки ПКБ пищеварительного тракта к приему биодоступного хелатного железа, увеличении количества жизнеспособных клеток ПКБ.

Предлагаемый способ осуществляют следующим образом.

В качестве питательной среды для культивирования пробиотических микроорганизмов используют осветленную творожную сыворотку, в которую добавляют компоненты среды: буферные соли, аскорбиновую кислоту, пептон и агар.

В приготовленную питательную среду вносят заранее приготовленный раствор казеиновых фосфопептидов.

Раствор казеиновых фосфопептидов готовили известным способом (см.: Kunst A. Process to isolate phosphopeptides. European Patent Application EPO 476199 A1 1990). Казеиновые фосфопептиды выделяли из обезжиренного молока путем кислотной коагуляции с последующей обработкой щелочью до получения казеината натрия. Далее казеинат Na подвергали ферментативному гидролизу с последующим подкислением и осаждением. Ниже представлена технологическая схема приготовления раствора казеиновых фосфопептидов:

Обезжиренное молоко (М.д. жира не более 0,05%)

Кислотная коагуляция + CaCI2

Прессование, центрифугирование (влажность зерен 80%)

Обработка реагентом - щелочь (рН 6,6-7,0)

Na-казеинат

Эндопротеиназа переваривание (рН 8,0)

Гидролизат (подкисление рН 4,6)

Удаление непептидного материала (центрифугирование)

CaCI2-агрегация, фильтрация

Раствор, обогащенный CCPs.

Раствор CCPs вносят в количестве 15-20% от объема питательной среды.

Добавляют в подготовленную питательную среду двухвалентную соль сульфата железа FeSO4 из расчета 0,35-0,45 мг/мл.

Устанавливают рН в пределах (7±0,1). Затем стерилизуют при температуре 121±1°С в течение 23±2 мин, охлаждают до 30±2°С, вносят 3-5% активизированных культур пропионовокислых бактерий.

Наращивание клеток пропионовокислых бактерий осуществляют при температуре 30°С в течение 24 часов, в условиях периодического культивирования при однократной нейтрализации среды через 12 часов насыщенным стерильным раствором углекислого натрия (NaCO3). Полученную суспензию клеток охлаждают и разливают в асептических условиях в стерильные флаконы по 10-12 см3.

Укупоривают стерильно в асептических условиях резиновыми пробками, охлаждают до температуры 4±2°С и хранят при этой температуре не более 90 суток.

Пример 1.

В качестве питательной среды для культивирования пробиотических микроорганизмов используют осветленную творожную сыворотку, в которую добавляют компоненты среды: буферные соли, аскорбиновую кислоту, пептон и агар.

В приготовленную питательную среду вносят приготовленный раствор казеиновых фосфопептидов в количестве 20% от объема питательной среды.

Добавляют в подготовленную питательную среду двухвалентную соль сульфата железа FeSO4 из расчета 0,45 мг/мл.

Устанавливают рН в пределах 7,0. Затем стерилизуют при температуре 12°С в течение 23 мин, охлаждают до 30°С, вносят 5% активизированных культур пропионовокислых бактерий штамма Propionibacterium freudenreichii subsp. shermanii AC-2503.

Наращивание клеток пропионовокислых бактерий осуществляют при температуре 30°С в течение 24 часов, в условиях периодического культивирования при однократной нейтрализации среды через 12 часов насыщенным стерильным раствором углекислого натрия (Na2СО3). Полученную суспензию клеток охлаждают и разливают в асептических условиях в стерильные флаконы по 12 см3.

Укупоривают стерильно в асептических условиях резиновыми пробками, охлаждают до температуры 4°С и хранят при этой температуре не более 90 суток.

Пример 2.

В качестве питательной среды для культивирования пробиотических микроорганизмов используют осветленную творожную сыворотку, в которую добавляют компоненты среды: буферные соли, аскорбиновую кислоту, пептон и агар.

В приготовленную питательную среду вносят приготовленный раствор казеиновых фосфопептидов в количестве 15% от объема питательной среды.

Добавляют в подготовленную питательную среду двухвалентную соль сульфата железа FeSO4 из расчета 0,35 мг/мл.

Устанавливают рН в пределах 7,0. Затем стерилизуют при температуре 12°С в течение 23 мин, охлаждают до 30°С, вносят 5% активизированных культур пропионовокислых бактерий штамма Propionibacterium freudenrichii subsp. fredenreichii типа АС-2500.

Наращивание клеток пропионовокислых бактерий осуществляют при температуре 30°С в течение 24 часов, в условиях периодического культивирования при однократной нейтрализации среды через 12 часов насыщенным стерильным раствором углекислого натрия (Na2CO3). Полученную суспензию клеток охлаждают и разливают в асептических условиях в стерильные флаконы по 12 см3.

Укупоривают стерильно в асептических условиях резиновыми пробками, охлаждают до температуры 6°С и хранят при этой температуре не более 90 суток.

Пример 3.

В качестве питательной среды для культивирования пробиотических микроорганизмов используют осветленную творожную сыворотку, в которую добавляют компоненты среды: буферные соли, аскорбиновую кислоту, пептон и агар.

В приготовленную питательную среду вносят приготовленный раствор казеиновых фосфопептидов в количестве 20% от объема питательной среды.

Добавляют в подготовленную питательную среду двухвалентную соль сульфата железа FeSO4 из расчета 0,45 мг/мл.

Устанавливают рН в пределах 7,0. Затем стерилизуют при температуре 12°С в течение 23 мин, охлаждают до 30°С, вносят 5% активизированных культур пропионовокислых бактерий штамма Propionibacterium cyclohexanicum Kusano типа AC-2260.

Наращивание клеток пропионовокислых бактерий осуществляют при температуре 30°С в течение 24 часов, в условиях периодического культивирования при однократной нейтрализации среды через 12 часов насыщенным стерильным раствором углекислого натрия (Na2CO3). Полученную суспензию клеток охлаждают и разливают в асептических условиях в стерильные флаконы по 12 см3.

Укупоривают стерильно в асептических условиях резиновыми пробками, охлаждают до температуры 4°С и хранят при этой температуре не более 90 суток.

Похожие патенты RU2345574C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕЛЕНА В КОЛЛОИДНОЙ ФОРМЕ ПРИ ПРОИЗВОДСТВЕ БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВОК 2018
  • Хамагаева Ирина Сергеевна
  • Кузнецова Ольга Степановна
  • Замбалова Наталья Александровна
RU2717997C2
СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИАЛЬНОГО КОНЦЕНТРАТА 2014
  • Хамагаева Ирина Сергеевна
  • Замбалова Наталья Александровна
  • Найданова Сэсэгма Борисовна
RU2567813C1
СПОСОБ ПОЛУЧЕНИЯ СЕЛЕНСОДЕРЖАЩЕЙ БИОЛОГИЧЕСКИ АКТИВНОЙ ДОБАВКИ 2006
  • Хамагаева Ирина Сергеевна
  • Кузнецова Ольга Степановна
RU2333655C2
СПОСОБ ПОЛУЧЕНИЯ ЗАМОРОЖЕННОЙ КОНЦЕНТРИРОВАННОЙ ЗАКВАСКИ НА ОСНОВЕ СИМБИОЗА ПРОБИОТИЧЕСКИХ БАКТЕРИЙ 2008
  • Хамагаева Ирина Сергеевна
  • Митыпова Наталья Васильевна
  • Хамагаева Наталья Александровна
RU2372782C1
СПОСОБ ПОЛУЧЕНИЯ КИСЛОМОЛОЧНОГО ПРОДУКТА "ЦЕЛЕБНЫЙ", ОБОГАЩЕННОГО СЕЛЕНОМ 2010
  • Хамагаева Ирина Сергеевна
  • Кузнецова Ольга Степановна
RU2440768C1
СПОСОБ ПРОИЗВОДСТВА КВАСНОГО НАПИТКА 2008
  • Хамагаева Ирина Сергеевна
  • Бадлуева Александра Владимировна
RU2361911C1
СПОСОБ ПРОИЗВОДСТВА ЙОДИРОВАННЫХ ПРОДУКТОВ 2005
  • Хамагаева Ирина Сергеевна
  • Бадлуева Александра Владимировна
RU2294645C2
СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИАЛЬНОГО КОНЦЕНТРАТА ПРОПИОНОВО-КИСЛЫХ БАКТЕРИЙ 2005
  • Хамагаева Ирина Сергеевна
  • Тумурова Софья Мункуевна
RU2309982C2
СПОСОБ ПРОИЗВОДСТВА ВАРЕНО-КОПЧЕНЫХ КОЛБАС 2004
  • Хамагаева Ирина Сергеевна
  • Барнакова Надежда Константиновна
  • Ханхалаева Ирина Архиповна
RU2284115C2
СПОСОБ ПОЛУЧЕНИЯ БАКТЕРИАЛЬНОГО КОНЦЕНТРАТА КОНСОРЦИУМА ПРОБИОТИЧЕСКИХ МИКРООРГАНИЗМОВ 2013
  • Хамагаева Ирина Сергеевна
  • Хазагаева Софья Николаевна
  • Замбалова Наталья Александровна
RU2544052C2

Иллюстрации к изобретению RU 2 345 574 C2

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕЙ БИОЛОГИЧЕСКИ АКТИВНОЙ ДОБАВКИ К ПИЩЕ

Изобретение относится к микробиологической промышленности и биотехнологии, а именно к БАД на основе молочного сырья и железа. В приготовленную питательную среду на основе осветленной творожной сыворотки вносят хелатирующий агент в виде раствора казеиновых фосфопептидов в количестве 15-20% от объема среды и сульфат железа в количестве 0,35-0,45 мг/мл. Среду стерилизуют, охлаждают и вносят 3-5% активизированных культур пропионовокислых бактерий, проводят культивирование. Изобретение позволяет повысить усвояемость железа организмом, сократить срок его усвоения за счет подготовки пропионовокислыми бактериями пищеварительного тракта к приему биодоступного железа, увеличить количество жизнеспособных клеток пропионовокислых бактерий. 2 ил., 1 табл.

Формула изобретения RU 2 345 574 C2

Способ получения железосодержащей биологически активной добавки к пище, характеризующийся тем, что в приготовленную среду на основе осветленной творожной сыворотки вносят хелатирующий агент в количестве 15-20% от объема питательной среды в виде раствора казеиновых фосфопептидов и сульфат железа в количестве 0,35-0,45 мг/мл, среду стерилизуют, охлаждают, вносят 3-5% активизированных культур пропионовокислых бактерий и проводят культивирование.

Документы, цитированные в отчете о поиске Патент 2009 года RU2345574C2

ЧЕРНОВ В.М
и др
Применение внутримышечных препаратов железа в клинической практике
- Гематология и трансфузиология, т.49, №3, 2004
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕЙ БИОЛОГИЧЕСКИ АКТИВНОЙ ПИЩЕВОЙ ДОБАВКИ 2005
  • Руцкова Татьяна Анатольевна
  • Кофанова Нина Николаевна
  • Козловская Эмма Павловна
  • Глазунов Валерий Петрович
  • Артюков Александр Алексеевич
RU2286685C1
БИОЛОГИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВОГО ПРЕПАРАТА НА ОСНОВЕ ЖЕЛЕЗА ГЕМА, А ТАКЖЕ ПИЩЕВОЙ ПРЕПАРАТ, ПОЛУЧЕННЫЙ ПРИ ИСПОЛЬЗОВАНИИ ЭТОГО СПОСОБА (ВАРИАНТЫ) 2004
  • Неджаум Фузия
  • Дюльстер Паскаль
  • Фата Нурия
  • Гийошон Дидье
  • Легран Шарль
  • Леплей-Легран Мари-Паскаль
RU2270576C2
БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА ПРОТИВОАНЕМИЧЕСКОГО ДЕЙСТВИЯ "АНТИ-АНЕМИН" 2001
  • Пилат Т.Л.
RU2192872C1

RU 2 345 574 C2

Авторы

Хамагаева Ирина Сергеевна

Кривоносова Анна Владимировна

Даты

2009-02-10Публикация

2007-04-19Подача