Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей авиационно-космической техники, в наземных энергетических, нефтегазоперекачивающих, транспортных системах и новых областях общего и специального машиностроения, работающих при температурах до 1550°С.
Известен композиционный материал, который состоит из армирующего неорганического волокна и матрицы, включающей 40-95 мас.% фазы SiC и 5-60 мас.% оксидной фазы. Оксидная фаза может представлять собой ZrSiO4 или стеклокерамическую фазу составов ВаО-MgO-Al2O3-SiO2 или SrO-Al2О3-SiO2. При этом средний элементный состав фазы SiC составляет, мас.%: 30-80 Si, 15-69 С, 0,005-20 О или 30-80 Si, 10-65 С, 0,005-25 О (патент США №6331496).
Недостатком указанного композиционного материала является низкая жаростойкость на воздухе при воздействии температуры 1550°С в течение длительного времени.
Известен композиционный материал, содержащий углеродные волокна и матрицу, состоящую из карбида кремния, бора и пироуглерода, распределенного в ее объеме и на поверхности материала при следующем соотношении компонентов в матрице, мас.%:
(патент РФ №2203218).
Композиционный материал может быть использован при изготовлении изделий, например уплотнительных колец, работающих в агрессивных средах и на воздухе при температуре 900°С в течение 1 часа.
Недостатком материала и изделий из него является недостаточная жаростойкость (высокая убыль массы) при температуре 1500°С.
Известен композиционный материал, армированный волокнами SiC с керамической матрицей, содержащей SiC в виде кристаллов в количестве до 70 мас.% и гранулы SiC из синтетического композиционного нанопорошка (заявка Франции №2849022).
Недостатком известного композиционного материала и изделий из него является низкая жаростойкость на воздухе при воздействии температуры выше 1200°С за счет образования защитной аморфной пленки SiO2 и пузырьков газообразных продуктов окисления, приводящих с течением времени к потере массы.
Для улучшения свойств композиционных материалов SiCвол/SiC получены интерфазные защитные покрытия на основе борсодержащих соединений нитрида бора BN или В4С на непрерывных волокнах SiC, которые служат не только для отклонения матричных трещин, но и для повышения окислительной стойкости, препятствуя деградации волокон.
Регулируемым осаждением слоев SiC, BxC, Si-B-C и Si-B-N получены многослойные композиционные материалы. Слоистые материалы на основе композиционных материалов SiC-SiC с защитными интерфазными борсодержащими покрытиями В4С, BN, полученными в тройной системе Si-B-C, Si-B-N, обладают способностью самозалечивания матрицы. Устойчивость к окислению композиционного материала типа SiCвол/BN/SiC с интерфазным покрытием BN при умеренных температурах улучшается по сравнению с композиционным материалом типа SiCвол/С/SiC, не содержащим соединений бора. Однако эти композиционные материалы не сохраняют устойчивость к окислению при температурах выше 1500°С.
Наиболее близким аналогом, взятым за прототип, является композиционный материал, содержащий углеродные волокна и матрицу, включающую кремний, углерод, тетраборид кремния, карбид кремния при следующем соотношении компонентов матрицы, мас.%:
и изделие, выполненное из него (патент РФ №2297992).
Недостатком композиционного материала-прототипа и изделий из него является недостаточная жаростойкость (высокая убыль массы) при рабочей температуре 1550°С.
Технической задачей предлагаемого изобретения является увеличение жаростойкости композиционного материала и изделий, выполненных из него, при рабочей температуре 1550°С в течение длительного времени.
Поставленная техническая задача достигается тем, что предложен композиционный материал, содержащий углеродные волокна и матрицу, включающую кремний, углерод, тетраборид кремния, карбид кремния, при этом матрица дополнительно содержит диоксид кремния при следующем соотношении компонентов матрицы, мас.%:
и изделие, выполненное из него.
Авторами установлено, что введение в матрицу диоксида кремния при заявленных соотношениях и содержаниях компонентов приводит к образованию тугоплавкого высококремнеземного стекла при воздействии кислорода воздуха, обеспечивающего герметизацию возможных микродефектов матрицы в виде микротрещин, пор и т.п., и, тем самым, повышает жаростойкость композиционного материала и изделий из него при воздействии рабочей температуры 1550°С в течение длительного времени.
Примеры осуществления
Для получения композиционного материала были приготовлены композиции предлагаемого материала (1-3) и материала-прототипа (4), соотношение компонентов в которых приведено в таблице 1.
Дисперсные частицы матрицы карбида кремния, кремния, углерода (SiC, Si, С) смешивали с частицами тетраборида кремния (SiB4) и углеродными волокнами в полиэтиленовых барабанах. В качестве углеродного волокнистого материала использовали углеродные волокна УКНП-5000.
Полученную смесь засыпали в пресс-форму и прессовали при температурах 120-150°С. Затем пресс-заготовки подвергали высокотемпературной термообработке в вакуумной печи при температуре 1500°С.
После термообработки в вакууме образцы подвергали пропитке золем диоксида кремния SiO2 с промежуточными сушками на воздухе.
Анализ полученных результатов свидетельствует о том, что жаростойкость предлагаемого композиционного материала и изделий, выполненных из него, выше по сравнению с материалом-прототипом, который теряет при обработке часть углерода армирующего наполнителя, что приводит к его разрушению после испытаний при 1550°С в течение 100 часов (см. табл.2).
Привес массы образцов (1,8-4,3 мас.%), связанный с образованием высококремнеземной стеклосвязки при нагревах на воздухе при температуре 1550°С, подтверждает наличие защитного эффекта матрицы предлагаемых составов композиционного материала в течение длительного времени (до 500 часов), предотвращающего диффузию кислорода воздуха вглубь образца и препятствующего окислению углеродного армирующего волокна.
Таким образом, применение предлагаемого композиционного материала в тяжелонагруженных узлах и деталях авиационно-космической техники, наземных энергетических и нефтегазоперекачивающих систем позволяет увеличить их жаростойкость при рабочей температуре 1550°С в течение длительного времени и, соответственно, повысить надежность и ресурс изделий.
Si
С
SiB4
SiO2
SiC
25
1,5
5
ост.
32
0,8
3
ост.
40
0,1
1
ост.
32
4
-
ост.
название | год | авторы | номер документа |
---|---|---|---|
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2008 |
|
RU2388727C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2009 |
|
RU2392250C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2009 |
|
RU2397969C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2010 |
|
RU2447039C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2005 |
|
RU2297992C1 |
КЕРАМИЧЕСКИЙ ОКИСЛИТЕЛЬНО-СТОЙКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2014 |
|
RU2560046C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2013 |
|
RU2530802C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2003 |
|
RU2257362C1 |
СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНОГО МАТЕРИАЛА ДЛЯ ПРИМЕНЕНИЯ В ВЕРХНЕМ СТРОЕНИИ ВАННЫХ СТЕКЛОВАРЕННЫХ ПЕЧЕЙ, А ТАКЖЕ СПОСОБ ПОВЫШЕНИЯ СПЕКТРАЛЬНОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ У ФОРМОВАННЫХ ОГНЕУПОРНЫХ ИЗДЕЛИЙ | 2015 |
|
RU2716065C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО МАТЕРИАЛА ИЗ УПРОЧНЯЮЩИХ ВОЛОКОН И МАТРИЦЫ, ВОЛОКНА КОТОРОГО ИМЕЮТ СЛОИСТОЕ ПОКРЫТИЕ, И МАТЕРИАЛ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ | 1994 |
|
RU2137732C1 |
Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей авиационно-космической техники, в наземных энергетических, нефтегазоперекачивающих, транспортных системах и новых областях общего и специального машиностроения, работающих при температурах до 1550°С. Предложенный композиционный материал содержит углеродные волокна и матрицу, включающую следующие компоненты, мас.%: Si 20-35, С 25-40, SiB4 0,1-1,5, SiO2 1-5, SiC остальное. Технический результат изобретения - увеличение жаростойкости изделий, позволяющее использовать их при рабочей температуре 1550°С в течение длительного времени 2 н.п. ф-лы, 2 табл.
1. Композиционный материал, содержащий углеродные волокна и матрицу, включающую кремний, углерод, тетраборид кремния, карбид кремния, отличающийся тем, что матрица дополнительно содержит диоксид кремния при следующем соотношении компонентов матрицы, мас.%:
2. Изделие из композиционного материала, отличающееся тем, что оно выполнено из материала по п.1.
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2005 |
|
RU2297992C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С КЕРАМИЧЕСКОЙ МАТРИЦЕЙ И С ЭЛЕМЕНТОМ УСИЛЕНИЯ ИЗ SIC И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1997 |
|
RU2193544C2 |
US 5173367 A, 22.12.1992 | |||
US 6908660 B2, 21.06.2005 | |||
JP 5132359 А, 28.05.1993. |
Авторы
Даты
2009-04-20—Публикация
2007-08-08—Подача