КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ Российский патент 2010 года по МПК C04B35/80 C04B35/577 

Описание патента на изобретение RU2388727C1

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей рабочих аппаратов газовых турбин, газоходов энергетических агрегатов и др., работающих при температуре 1350°С.

Известен керамический композиционный материал следующего состава, мас.%:

Стекломатрица 60-66 углеродный жгут 34-40

при следующем соотношении

компонентов стекломатрицы, мас.%:

SiO2 58,9-69,3 В2O3 13,5-15 SiOC 15,7-27,6

(патент РФ №2193539).

Композиционный материал может быть использован для изготовления простых теплонагруженных элементов авиационной техники и машиностроения.

Недостатком указанного композиционного материала является недостаточно высокая жаростойкость при температурах выше 800°С.

Известен композиционный материал, содержащий углеродные волокна и матрицу, состоящую из карбида кремния, бора и пироуглерода, распределенного в ее объеме и на поверхности материала при следующем соотношении компонентов в матрице, мас.%:

SiC 10-50 В 0,5-1,2 С (пироуглерод) остальное

(патент РФ №2203218).

Композиционный материал может быть использован при изготовлении изделий, например уплотнительных колец, работающих в агрессивных средах и на воздухе при температуре 900°С в течение 1 часа.

Недостатком композиционного материала и изделий из него является недостаточная жаростойкость (высокая убыль массы) при температуре 1350°С на воздухе.

Известен керамический композиционный материал следующего состава, мас.%:

Углеродное волокно 50 Стекломатрица 50

при следующем соотношении

компонентов стекломатрицы, мас.%:

SiO2 81 В2O3 13 Аl2O3 2 Na2O 4

(патент США №4511663).

Известный композиционный материал может быть использован для изготовления теплонагруженных деталей, применяющихся в авиационной технике и машиностроении.

Недостатком керамического композиционного материала является низкая жаростойкость при температуре 1350°С.

Наиболее близким аналогом, взятым за прототип, является керамический композиционный материал, содержащий углеродные волокна и матрицу, включающую кремний, углерод, тетраборид кремния, карбид кремния, при следующем соотношении компонентов матрицы, мас.%:

Si 20-35 С 25-40 SiB4 2-6 SiC остальное

(патент РФ №2297992).

Керамический композиционный материал-прототип может быть использован при изготовлении, например, уплотнительных колец газо- и нефтеперекачивающих станций, втулок, клапанов теплообменников, рекуператоров, работающих в агрессивных средах и на воздухе при 1500°С.

Недостатком прототипа является низкая жаростойкость (высокая убыль массы) при температуре 1350°С в течение длительного времени (свыше 100 часов), что делает данный керамический композиционный материал неработоспособным в условиях эксплуатации.

Технической задачей предлагаемого изобретения является увеличение жаростойкости керамического композиционного материала при рабочей температуре 1350°С в течение длительного времени (свыше 100 часов).

Поставленная техническая задача достигается тем, что предложен керамический композиционный материал, содержащий углеродные волокна и матрицу, включающую кремний, углерод, тетраборид кремния, карбид кремния, при этом матрица дополнительно содержит диоксид кремния и борный ангидрид при следующем соотношении компонентов матрицы, мас.%:

Si 20-30 С 25-35 SiB4 0,1-1,5 SiO2 6-9 В2О3 3-9 SiC остальное

Авторами установлено, что введение в матрицу диоксида кремния и борного ангидрида при заявленных соотношениях и содержании компонентов приводит к образованию при температурах 1350°С при воздействии кислорода воздуха боросиликатной стеклосвязки, обеспечивающей самозалечивание (закупорку) возможных микродефектов матрицы в виде микротрещин, пор и т.п., препятствующей диффузии кислорода в объем материала и деградации углеродного волокна, и, тем самым, повышает жаростойкость керамического композиционного материала при воздействии рабочей температуры 1350°С в течение длительного времени.

Примеры осуществления

Для получения керамического композиционного материала были приготовлены композиции предлагаемого материала (1-3) и материала-прототипа (4), соотношение компонентов в которых приведено в таблице 1.

Карбид кремния, кремний, углерод и тетраборид кремния - промышленно выпускаемые порошки. Перед смешиванием компонентов их предварительно измельчают до получения частиц размером менее 40 мкм. Поликомпонентный золь в системе SiO2-B2O3 получают путем жидкофазного гидролиза в кислой среде водно-спиртового раствора тетраэтоксисилана (ТЭОС) в присутствии борной кислоты.

Дисперсные частицы матрицы карбида кремния, кремния, углерода (SiC, Si, С) смешивали с частицами тетраборида кремния (SiB4) и углеродными волокнами в полиэтиленовых барабанах. В качестве углеродного волокнистого материала использовали углеродные волокна УКНП-5000.

Полученную смесь засыпали в пресс-форму и прессовали при температуре 120-150°С. Затем пресс-заготовки подвергали высокотемпературной термообработке в вакуумной печи при температуре 1400-1450°С.

После термообработки в вакууме образцы подвергали пропитке золем системы SiO22O3 с промежуточными сушками на воздухе.

Анализ полученных результатов свидетельствует о том, что жаростойкость предлагаемого керамического композиционного материала выше по сравнению с материалом-прототипом, который теряет при обработке часть углерода армирующего наполнителя, что приводит к его разрушению после испытаний при 1350°С в течение 100 часов.

Привес массы образцов (0,9-3,2 мас.%), связанный с образованием боросиликатной стеклосвязки при нагревах на воздухе при температуре 1350°С, подтверждает наличие защитного эффекта матрицы предлагаемых составов керамического композиционного материала в течение длительного времени (до 500 часов), предотвращающего диффузию кислорода воздуха вглубь образца и препятствующего окислению углеродного армирующего волокна.

Таким образом, применение предлагаемого керамического композиционного материала в теплонагруженных узлах и деталях газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем позволяет увеличить их жаростойкость при рабочей температуре 1350°С в течение длительного времени и, соответственно, повысить надежность и ресурс изделий.

Таблица 1 Наименование компонентов Состав по примерам, мас.% 1 2 3 4 прототип Матрица: Si 20 25 30 30 С 35 30 25 30 SiB4 1,5 0,8 0,1 4 SiO2 9 7 6 - В2O3 6 3 9 - SiC ост. ост. ост. ост.

Таблица 2 Параметры испытаний образцов на жаростойкость Изменение массы образцов после испытаний на жаростойкость, мас.% Температура, °С Время, ч 1 2 3 4 прототип 1350 100 1,4 0,9 1,6 -2,3 разрушение образца 200 2,1 1,6 2,3 разрушение образца 300 2,8 2,1 2,7 -«- 400 3,1 2,6 3,2 -«- 500 2,9 2,3 2,8 -«-

Похожие патенты RU2388727C1

название год авторы номер документа
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2009
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Солнцев Сергей Станиславович
  • Ермакова Галина Владимировна
  • Соловьева Галина Анатольевна
RU2397969C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2007
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Солнцев Сергей Станиславович
  • Ермакова Галина Владимировна
RU2352543C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2009
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Солнцев Сергей Станиславович
  • Ермакова Галина Владимировна
RU2392250C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2005
  • Солнцев Станислав Сергеевич
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Ермакова Галина Владимировна
  • Солнцев Сергей Станиславович
RU2297992C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2010
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Солнцев Сергей Станиславович
  • Ермакова Галина Владимировна
  • Рожкова Мария Сергеевна
RU2447039C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2003
  • Солнцев С.С.
  • Гращенков Д.В.
  • Наумова А.С.
  • Солнцев С.С.
RU2257362C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2013
  • Ваганова Мария Леонидовна
  • Гращенков Денис Вячеславович
  • Ермакова Галина Владимировна
  • Солнцев Сергей Станиславович
RU2530802C1
КЕРАМИЧЕСКИЙ ОКИСЛИТЕЛЬНО-СТОЙКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Гращенков Денис Вячеславович
  • Солнцев Сергей Станиславович
  • Евдокимов Сергей Анатольевич
  • Сорокин Олег Юрьевич
RU2560046C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2007
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Солнцев Сергей Станиславович
  • Наумова Александра Сергеевна
  • Уварова Наталья Евгеньевна
RU2359927C1
СТЕКЛОКЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2009
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Солнцев Сергей Станиславович
  • Наумова Александра Сергеевна
  • Уварова Наталья Евгеньевна
RU2412135C2

Реферат патента 2010 года КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей рабочих аппаратов газовых турбин, газоходов энергетических агрегатов и др., работающих при температуре 1350°С. Предложен керамический композиционный материал, включающий матрицу и углеродные волокна, при этом матрица имеет следующий химический состав, мас.%: Si 20-30, С 25-35, SiB4 0,1-1,5, SiO2 6-9, В2О3 3-9, SiC - остальное. Технический результат изобретения - увеличение жаростойкости композиционного материала при рабочей температуре 1350°С в течение длительного времени (свыше 100 часов) и повышение надежности и ресурса изделий. 2 табл.

Формула изобретения RU 2 388 727 C1

Керамический композиционный материал, содержащий углеродные волокна и матрицу, включающую кремний, углерод, тетраборид кремния, карбид кремния, отличающийся тем, что матрица дополнительно содержит диоксид кремния и борный ангидрид при следующем соотношении компонентов матрицы, мас.%:
Si 20-30 С 25-35 SiB4 0,1-1,5 SiO2 6-9 В2O3 3-9 SiC остальное

Документы, цитированные в отчете о поиске Патент 2010 года RU2388727C1

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2005
  • Солнцев Станислав Сергеевич
  • Гращенков Денис Вячеславович
  • Исаева Наталия Всеволодовна
  • Ермакова Галина Владимировна
  • Солнцев Сергей Станиславович
RU2297992C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2000
  • Щурик А.Г.
  • Чунаев В.Ю.
  • Удинцев П.Г.
RU2203218C2
US 5965266 A, 12.10.1999
US 2003138615 A1, 24.07.2003
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1

RU 2 388 727 C1

Авторы

Гращенков Денис Вячеславович

Исаева Наталия Всеволодовна

Солнцев Сергей Станиславович

Ермакова Галина Владимировна

Даты

2010-05-10Публикация

2008-08-25Подача