Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стеклокерамических матриц, армированных углеродными наполнителями для изготовления теплонагруженных узлов и деталей перспективной авиационно-космической техники, наземных, энергетических, нефте-, газоперекачивающих, транспортных систем и новых областей общего и специального машиностроения, работающих при температурах до 1300°С.
Известен керамический композиционный материал следующего состава, мас.%:
при следующем соотношении компонентов стекломатрицы, мас.%:
(The mechanical properties of carbon
fiber reinforced Pyrex glass. //
Journal of Materials Science
7 (1972) P.1454.
Недостатком указанного керамического композиционного материала является низкая жаростойкость при воздействии температур выше 450°С в окислительной среде из-за интенсивного окисления углеродных волокон.
Известен композиционный материал, включающий стекломатрицу, армированную углеродными волокнами, при следующем соотношении компонентов стекломатрицы, мас.%:
(патент США №5391213).
Недостатками известного композиционного материала являются низкая жаростойкость и повышенный коэффициент термического расширения при рабочих температурах 500-550°С.
Известные композиционные материалы могут быть использованы только для изготовления легкого высокотемпературного крепежа многоразовой теплозащиты.
Известен также композиционный материал следующего состава, мас.%:
при следующем соотношении компонентов стекломатрицы, мас.%:
(патент РФ №2193539).
Недостатком указанного композиционного материала является недостаточно высокая жаростойкость при температурах выше 800°С.
Композиционный материал может быть использован для изготовления простых теплонагруженных элементов авиационной техники и машиностроения.
Наиболее близким аналогом, взятым за прототип, является керамический композиционный материал следующего состава, мас.%:
при следующем соотношении компонентов стекломатрицы, мас.%:
(патент США №4511663).
Известный композиционный материал может быть использован для изготовления теплонагруженных деталей на основе ленточных и жгутовых препрегов, применяющихся в авиационной технике и машиностроении.
Недостатками керамического композиционного материала - прототипа являются низкая жаростойкость при температурах до 1300°С.
Технической задачей изобретения является повышение жаростойкости материала при рабочих температурах до 1300°С.
Поставленная техническая задача достигается тем, что предложен керамический композиционный материал, включающий стекломатрицу, содержащую SiO2, Al2О3, и углеродный волокнистый наполнитель, в котором стекломатрица дополнительно содержит CaO, BaO, MgO, при следующем соотношении компонентов стекломатрицы, мас.%:
При этом преимущественное соотношение стекломатрицы и углеродного волокнистого наполнителя составляет, мас.%:
Предлагаемый керамический композиционный материал предназначен для изготовления теплонагруженных деталей, применяющихся в авиационной, космической технике и специальном машиностроении.
Авторами установлено, что дополнительное введение в стекломатрицу оксида кальция, оксида бария и оксида магния при заявленном содержании и соотношении компонентов позволит повысить жаростойкость керамического композиционного материала, работающего при температурах до 1300°С, за счет образования в стеклофазе кристаллических фаз, таких как цельзиан BaO·Al2O3·SiO2, кальциевый анортит СаО·Al2O3·2SiO2, кордиерит 2MgO·2Al2O3·5SiO2, имеющих высокие температуры плавления.
Примеры осуществления
Для получения керамического композиционного материала были приготовлены четыре композиции, соотношение компонентов в которых приведено в таблице 1.
Пример 1
Стеклокерамический композиционный материал (табл.1, состав 1) получали по методу, совмещающему «золь-гель» технологию приготовления алюмосиликатного стекла и шликерную технологию. В качестве углеродного волокнистого материала использовали углеродную ленту «Кулон».
Суспензию наносили на ленту «Кулон» с одновременной прокаткой резиновым валиком и последующей выкладкой на формовочную плоскость. Полученные полуфабрикаты сушили при температуре (18-100)°С в течение 48-4 часов. Далее заготовки выкладывали в графитовые пресс-формы и подвергали горячему прессованию при температуре до 1400°С.
Примеры 2-4 получения керамических композиционных материалов осуществляли аналогично примеру 1.
В таблице 2 представлены свойства полученных образцов предлагаемого керамического композиционного материала в сравнении с материалом - прототипом.
Анализ полученных результатов свидетельствует о том, что предложенный керамический композиционный материал позволяет на порядок улучшить жаростойкость и повысить температуру применения на 500°С.
Применение предлагаемого керамического композиционного материала для изготовления теплонагруженных узлов и деталей обеспечит увеличение ресурса и надежности этих деталей.
Предложенный керамический композиционный материал экологически-, пожаро- и взрывобезопасен.
название | год | авторы | номер документа |
---|---|---|---|
СТЕКЛОКЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2009 |
|
RU2412135C2 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2006 |
|
RU2310628C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2006 |
|
RU2347771C2 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2003 |
|
RU2257362C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2008 |
|
RU2388727C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2004 |
|
RU2273617C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2009 |
|
RU2397969C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2009 |
|
RU2392250C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2007 |
|
RU2352543C1 |
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2013 |
|
RU2530802C1 |
Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стеклокерамических матриц, армированных углеродными наполнителями для изготовления теплонагруженных узлов и деталей перспективной авиационно-космической техники, наземных, энергетических, нефте-, газоперекачивающих, транспортных систем и новых областей общего и специального машиностроения, работающих при температурах до 1300°С. Предложен керамический композиционный материал, включающий стекломатрицу и углеродный волокнистый наполнитель, стекломатрица содержит компоненты в следующем соотношении, мас.%: СаО 2,9-4,1, ВаО 2,8-4,3, MgO 6,5-10,1, Al2О3 14,2-17,3, SiO2 - остальное. При этом преимущественное соотношение стекломатрицы и углеродного волокнистого наполнителя составляет, мас.%: стекломатрица 60,5-73,5, углеродный волокнистый наполнитель 26,5-39,5. Технический результат изобретения - повышение жаростойкости материала при рабочих температурах до 1300°С. Предложенный керамический композиционный материал экологически-, пожаро- и взрывобезопасен. 1 з.п. ф-лы, 2 табл.
1. Керамический композиционный материал, включающий стекломатрицу, содержащую SiO2, Al2O3 и углеродный волокнистый наполнитель, отличающийся тем, что стекломатрица дополнительно содержит СаО, BaO, MgO при следующем соотношении компонентов стекломатрицы, мас.%:
2. Керамический композиционный материал по п.1, отличающийся тем, что он имеет следующий состав, мас.%:
US 4511663 A, 16.04.1985 | |||
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2006 |
|
RU2310628C1 |
US 5630858 A, 20.05.1997 | |||
GB 1272651 A, 03.05.1972 | |||
US 6034012 A, 07.03.2000. |
Авторы
Даты
2009-06-27—Публикация
2007-12-05—Подача