РАСХОДОМЕР Российский патент 2009 года по МПК G01F1/20 G01F1/34 G01N9/22 

Описание патента на изобретение RU2362123C2

Изобретение относится к измерительной технике и предназначено для измерения расхода с повышенной точностью при одновременном измерении плотности и определении состава (соотношения компонентов в смеси) перекачиваемой двухкомпонентной жидкости, например ракетного или авиационного топлива, нефтепродуктов, смеси воды и нефти в условиях больших перепадов температур, например при изменениях высоты полета, при периодическом чередовании освещенной (солнечной) и теневой стороны с резкими перепадами температур, в различных климатических условиях.

Известен расходомер, содержащий корпус, состоящий из двух частей и включающий подводящее и направляющее сопла, приемное отверстие, выполненное в перегородке корпуса, упругий чувствительный элемент, например мембрану, выходной патрубок и преобразователь перемещения упругого чувствительного элемента в выходной сигнал, причем полость между соплами сообщена с подмембранной полостью корпуса (А.с. СССР № 533824, МПК G01F 1/34, 30.10.1976).

Наиболее близким по технической сущности и достигаемому результату к заявляемому устройству является расходомер, содержащий корпус, состоящий из двух частей и включающий подводящее и направляющее сопла, приемное отверстие, выполненное в перегородке корпуса, упругий чувствительный элемент, например мембрану, выходной патрубок и преобразователь перемещения упругого чувствительного элемента в выходной сигнал, причем полость между соплами сообщена с подмембранной полостью корпуса. В него дополнительно введено тело с положительной плавучестью, жестко закрепленное на чувствительном элементе (а.с. СССР № 1174754, МПК G01F 1/34, 23.08.1985 г.).

Недостатком приведенных расходомеров является погрешность, вызываемая зависимостью выходного сигнала, снимаемого с преобразователя перемещения мембраны, от плотности измеряемой среды, невозможность определить плотность измеряемой жидкости, а в двухкомпонентной жидкости (например, нефти и воды) соотношение между компонентами смеси может изменяться со временем, что в свою очередь приводит к изменению плотности жидкости.

Задачей изобретения является повышение точности измерения и расширение функциональных возможностей расходомера, заключающееся в дополнительном определении плотности жидкости, а также соотношения между компонентами в двухкомпонентной смеси.

Поставленная задача достигается тем, что в расходомере, содержащем корпус, состоящий из двух частей и включающий подводящее сопло и сопло, направляющее струю измеряемой среды в приемное отверстие, выполненное в корпусе, мембрану с телом положительной плавучести, разделяющую заполненную измеряемой средой камеру корпуса на две полости - надмембранную и подмембранную, сообщающуюся с полостью между соплами, выходной патрубок и дифференциально-трансформаторный преобразователь перемещения упругого чувствительного элемента в выходной сигнал, в отличие от прототипа в корпусе расходомера выполнена дополнительная камера, разделенная второй мембраной с телом положительной плавучести на две полости - надмембранную и подмембранную, заполненные тестовой средой - водой, спиртом, эфиром или другой тестовой жидкостью с известной плотностью, камеры корпуса разделены перегородкой и мембраной, подмембранная полость дополнительной камеры соединена каналом, содержащим мембрану, с полостью между соплами, в каналы, соединяющие подмембранные полости камер корпуса и полость между соплами, введены два герметизирующих элемента, при этом каналы объединены с двумя дифференциально-трансформаторными преобразователями перемещений мембран камер с подвижными сердечниками, преобразователи связаны с аналогово-цифровой системой, которая соединена с однокристальным микроконтроллером.

Кроме того, в качестве сердечников дифференциально-трансформаторных преобразователей перемещения использовано магнитопроводящее твердое тело или несмачиваемая магнитная жидкость, помещенная в соединительные каналы.

Кроме того, герметизирующие элементы выполнены в виде поршней, жестко закрепленных на телах положительной плавучести.

Существо изобретения поясняется чертежами. На фиг.1 изображена принципиальная схема расходомера, на фиг.2 - силы, действующие на тело положительной плавучести, поясняющие принцип действия расходомера, на фиг.3 представлены графики зависимости показаний расхода от плотности для разработанной конструкции и для ее прототипа, а на фиг.4 поясняет зависимость процентного состава двухкомпонентной жидкости от плотности этой жидкости.

Конструкция предлагаемого устройства содержит корпус 1, подводящее сопло 2, соосно с которым с зазором установлено направляющее сопло 3. Подводящее сопло 2 образует полость 4, при этом направляющее сопло установлено с зазором против отверстия 5, выполненного в верхней части 6 корпуса 1. Внутренний объем корпуса 1 разделен перегородкой 7 и мембраной 8 на две камеры 9 и 10, которые, в свою очередь, разделены мембранами 11, 12 на две части, образующие надмембранные полости 13 и 14 и подмембранные полости 15 и 16 соответственно. Полости 15 и 16 соединены каналами 17, 18, 19 и 20 с полостью 4.

На выходе соединительного канала 18 перед полостью 16 стоит мембрана 21. На мембранах 11 и 12 закреплены тела с положительной плавучестью 22 и 23 соответственно. Надмембранная полость 14 и подмембранная полость 16 камеры 10 заполнены тестовой жидкостью с известной плотностью, например водой или тестовой нефтью. На каналах 19 и 20 расположены два дифференциально-трансформаторных датчика перемещения (ДТП) 24 и 25, подвижные сердечники (26 и 27) которых помещены в каналы 19 и 20. В качестве сердечников может использоваться несмачиваемая намагниченная жидкость. В каналах 19 и 20 также помещены герметизирующие элементы 28 и 29, например поршни, расположенные в каналах 19 и 20 соответственно со штоком, жестко закрепленным на теле с положительной плавучестью 22 или 23 соответственно. Выход жидкости осуществляется через выходной патрубок 30, расположенный в корпусе 1. Дифференциально-трансформаторные датчики перемещения 24 и 25 соединены с аналогово-цифровой системой 31, например БИС К572ПВ4, которая соединена с однокристальным микроконтроллером 32, например К1816BE51.

Расходомер работает следующим образом. Сформированная подводящим соплом 2 струя измеряемой среды направляется через направляющее сопло 3 в отверстие 5, заполняет внутреннюю полость 13 жидкостью, воздействует на нее и вытекает через патрубок 30 в корпусе 1 расходомера. При этом полость 13 воспринимает и статическое давление, и скоростное давление струи, пропорциональное квадрату расхода среды и ее плотности.

где РСТ - гидростатическое давление;

РД - гидродинамическое давление;

Р13 - давление в полости 13.

где ρи - плотность измеряемой жидкости;

Q - объемный расход;

υ - скорость потока в направляющем сопле 3;

S3 - площадь отверстия направляющего сопла 3.

Вследствие того что струя, вытекающая из сопла 2, сохраняя вначале цилиндрическую форму, становится конусообразной до попадания в отверстие направляющего сопла 3, в полости 4 создается низкое давление, так как поток между выходами и входами сопел 2 и 3 имеет в этой области большую кинетическую энергию и, следовательно, малую потенциальную энергию.

где Р4 - давление в полости 4;

К4 - коэффициент восприятия давления полостью 4.

Благодаря этому давление, поступающее из полости 4 по соединительным каналам 17 и 18 в полости 15 и 16, несколько ниже статического давления. Мембрана 21 расположена на выходе соединительного канала 18 перед полостью 16, обеспечивая равенство давлений в полостях 4 и 16, а также герметизацию полости 16 от полости 4, предотвращая смешивание измеряемой и тестовой жидкости. Мембрана 8 передает давление из полости 13 в полость 14, которая заполнена тестовой средой.

Таким образом, мембраны 11 и 12 с телами положительной плавучести 22 и 23 находятся под действием силы, обусловленной разностью давлений в надмембранной и подмембранной полостях, и выталкивающей силы (силы Архимеда), пропорциональной плотности жидкости и объему тела с положительной плавучестью 22 или 23 соответственно. Под действием этих сил мембрана 11 с закрепленным на ней телом с положительной плавучестью 22, расположенная в камере 9, заполненной измеряемой средой, смещается вверх или вниз.

где Р11 - давление, воспринимаемое мембраной 11, расположенной в полости 9;

P12 - давление, воспринимаемое мембраной 12, расположенной в полости 10;

P4 - давление в полости 4;

PA1 - давление силы Архимеда, воспринимаемое мембраной 11 камеры 9;

PA2 - давление силы Архимеда, воспринимаемое мембраной 12 камеры 10; PG - давление силы тяжести на мембраны 11 и 12.

где V - объем тел с положительной плавучестью 22 и 23;

S11 и S12 - площадь мембран 11 и 12;

ρт - плотность тестовой среды в камере 10;

ρп - плотность тел с положительной плавучестью 22 и 23.

Как видно из приведенных выше формул (5) и (6), если давление, вызываемое силой Архимеда, действующее на тело положительной плавучести 22, превышает гидродинамическое давление и давление, вызываемое силой тяжести, действующей на тело положительной плавучести 22, то мембрана 11 смещается вверх, если же давление, вызываемое силой Архимеда, действующей на тело положительной плавучести 22, меньше суммы гидродинамического давления и давления, обусловленного силой тяжести, то мембрана смещается вниз. Аналогично и для мембраны 12 с закрепленным на ней телом положительной плавучести, расположенной в камере 10, заполненной тестовой средой. Поскольку давления над- и подмембранных 13, 15 камеры 9, такие же как и над- и подмембранных полостях 14, 16 камеры 10, заполненной тестовой жидкостью, а следовательно, и положения самих мембран не совпадают из-за того, что поскольку камеры 9 и 10 заполнены жидкостями с разной плотностью (измеряемая среда с переменной неизвестной плотностью и тестовая среда с заранее известной плотностью), а следовательно, различными силами Архимеда (PA1 и РA2), действующими на тела с положительной плавучестью 22 и 23.

С учетом (5 и 6) уравнение равновесия для тел с положительной плавучестью 22 и 23 будут иметь вид:

где F11 - сила упругости мембраны 11;

FA22 - сила Архимеда, действующая на тело положительной плавучести 22;

F13 - сила гидродинамического давления жидкости;

F4 - сила давления жидкости в полости 15 (соответствующего давлению в полости 4) на мембрану 22;

FG22 - сила тяжести тела положительной плавучести 22.

Для камеры 10 уравнение примет следующий вид:

где F12 - сила упругости мембраны 12;

FA23 - сила Архимеда, действующая на тело положительной плавучести 23;

F14 - сила гидродинамического давления жидкости;

F4 - сила давления жидкости в полоти 15 (соответствующего давлению в полости 4) на мембрану 22;

FG23 - сила тяжести тела положительной плавучести 23.

Действие сил на мембраны 11, 12 с закрепленными на них телами положительной плавучести 22, 23 показано на фиг.2. Поскольку мембраны 11 и 12 абсолютно идентичны, то силы тяжести, действующие на них, будут равны, т.е. FG23=FG22. Так как давления в надмембранных камерах 13 и 14 равны и также равны площади мембран 11 и 12, то и силы гидродинамического давления жидкости в надмембранных на мембраны 11 и 12 будут равны, т.е. F14=F15. Из этого можно заключить, что в уравнениях (10) и (11) будут различны только силы Архимеда, действующие на тела положительной плавучести 22 и 23 (FA22 и FА23), которые будут зависеть от плотности жидкости, в которую погружены тела положительной плавучести (измеряемая жидкость в камере 9, и тестовая в камере 10).

где FA23 - сила Архимеда, действующая на тело положительной плавучести 22/23;

ρи/т - плотность измеряемой среды/ тестовой жидкости;

V22/23 - объем тела с положительной плавучестью 22/23.

Силу тяжести тел с положительной плавучестью 22, 23 определим по следующей формуле:

где FG22/FG22 - сила тяжести, действующая на тело положительной плавучести 22/23.

Силы упругости мембран 11 и 12 (F11/F12) будут зависеть от жесткости мембран и смещения мембран:

где F11/12 - сила упругости мембраны 11/12;

С - жесткость мембран 11 и 12, а поскольку мембраны 11 и 12 идентичны, то и жесткость для мембран 11 и 12 будет равна;

Х11/12 - смещение мембраны 11/12.

Учитывая формулу (3), силу гидродинамического давления жидкости (F13) и силу давления жидкости в полости 15 (соответствующего давлению в полости 4) на мембрану 22 (F4), можно представить в следующем виде:

где S11 - площадь мембран 11, 12;

P4 - давление в полости 4;

P13 - давление в полости 13;

Q - объем измеряемой жидкости;

S3 - площадь отверстия направляющего сопла 3.

В соответствии с вышеприведенным формулы (10) и (11) можно представить в следующем виде:

где Х11/12 - смещение мембраны 11/12;

P4 - давление в полости 4;

V22 - объем тел с положительной плавучести 22 и 23.

Из (17) следует, что разность смещения мембран 11 и 12 зависит от разности плотности измеряемой жидкости и тестовой среды.

Поскольку плотность тестовой жидкости (ρт) и объем тел с положительной плавучести 22 и 23 (V22) известны, то, измерив разность смешения мембран, можно определить плотность измеряемой жидкости. Герметизирующие элементы 28 и 29 служат для передачи смещения мембран 11 и 12 в каналы 19 и 20, а также изоляции этих каналов от подмембранных полостей 15 и 16. Герметизирующими элементами 28 и 29 могут быть поршни, расположенные в каналах 19 и 20, со штоком, жестко закрепленным на теле с положительной плавучестью 22 или 23 соответственно. Следовательно, смещение мембраны 11 передается по каналу 19 подвижному сердечнику 26 дифференциально-трансформаторного преобразователя 24 камеры 9. Мембрана 12, расположенная в заполненной тестовой средой камере 10 с теми же давлениями, что и камера 9, смещает сердечник 27 дифференциально-трансформаторного преобразователя 25 камеры 10. Смещение сердечника 27 измеряются дифференциально-трансформаторными преобразователями 25, которые выдают сигналы, функционально связанные с величиной расхода и плотностью жидкости в камере.

где U24 и U25 - напряжения, снимаемые с дифференциально-трансформаторных преобразователей 24 и 25 соответственно;

X11X12 - смещения мембран 11, 12;

K24=K25 - коэффициенты преобразования для дифференциально-трансформаторных преобразователей 24 и 25 соответственно.

Поскольку камера 10 заполнена тестовой средой, плотность которой известна, то сигнал дифференциально-трансформаторного преобразователя 25 камеры 10 пропорционален расходу без погрешности, вызванной неизвестной плотности измеряемой среды, а разность между значениями сигналов дифференциально-трансформаторных преобразователей 24 и 25 будет пропорционален плотности измеряемой среды.

Как следует из формул (19) и (20), а также равенства коэффициентов преобразования (K24=K25) для дифференциально-трансформаторного преобразователя 24 и 25, формулу 21 можно представить в следующем виде:

где FA22/FA23 - сила Архимеда, действующая на тела с положительной плавучестью 22/23.

Используя формуле (12), получаем:

Аналогово-цифровая система 31 преобразует аналоговый сигналы с дифференциально-трансформаторных преобразователей 24 и 25 в параллельный цифровой код, который идет на однокристальный микроконтроллер 32, где в соответствии со значением этих сигналов и плотности нефти данной скважины вычисляется расход (26) и плотность (24) измеряемой жидкости, а также процент содержания в ней нефтесодержащей жидкости (25).

Плотность измеряемой жидкости находим по следующей формуле:

Зная плотность, можно определить состав жидкости:

где µ1 и µ2 - процентный состав для воды и нефти жидкости соответственно;

ρн=Const - плотность нефтесодержащей жидкости для данной скважины, хранящаяся в ППЗУ микроконтроллера.

где gV/S11=Const и ρп=Const; ρп - плотность тела положительной плавучести;

ρи - плотность измеряемой жидкости, определяемая по (24);

K24 - коэффициент преобразования для дифференциально-трансформаторного преобразователя 24, хранится в ППЗУ микроконтроллера;

U24 - напряжение, снимаемое с дифференциально-трансформаторного преобразователя 24, поступает на МК с АЦС.

Как видно из формулы (26), погрешность измерения расхода, вызываемая переменной плотностью, в отличие от прототипа, учитывается, что значительно повышает точность измерения. На графике, приведенном на фиг.3, смоделированы показания расходомера и его прототипа в зависимости от плотности измеряемой жидкости. Как видно из графика, разработанный расходомер имеет незначительную погрешность, вызываемую тем, что давление в полости 4 чуть меньше гидростатического, в то время как прототип помимо этой погрешности имеет более значительное отклонение от реального значения, вызванное зависимостью гидродинамического давления, которое измеряется для получения значения расхода, от плотности измеряемой жидкости (РДиQ2/2S32). На графике, представленном на фиг.4, показана зависимость процентного состава (µ1 и µ2) двухкомпонентной жидкости на воды и нефтесодержащей жидкости от плотности данной жидкости измеряемой разработанным устройством. Например, при плотности измеряемой жидкости ρи=850 кг/м3, для нефти с плотностью ρн=800 кг/м3, процентный состав жидкости будет следующий: µ1=25% - процентный состав воды, µ2=75% - процент нефти в данной двухкомпонентной жидкости.

Таким образом, расходомер повышает точность измерения расхода за счет компенсации погрешности, вызываемой переменной плотностью измеряемой среды, и позволяет дополнительно определять состав жидкости по ее плотности.

Похожие патенты RU2362123C2

название год авторы номер документа
РАСХОДОМЕР 2003
  • Пугин А.М.
  • Иванова И.Р.
RU2247326C1
УРОВНЕМЕР-РАСХОДОМЕР ЖИДКОСТИ В БАКЕ 2011
  • Арсланов Ирек Наилович
  • Ярулин Чингиз Асхатович
  • Пугин Андрей Михайлович
  • Сайфеев Тимур Рафинадович
  • Пугин Михаил Андреевич
  • Ильин Александр Иванович
RU2502957C2
МИКРОЭЛЕКТРОННЫЙ ДАТЧИК ПЕРЕПАДА ДАВЛЕНИЯ ЕГИАЗАРЯНА МДПД-Е И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1994
  • Егиазарян Эдуард Людвикович
RU2107272C1
ГЛУБИННЫЙ ДАТЧИК РАСХОДА БУРОВОГО РАСТВОРА 2011
  • Есауленко Владимир Николаевич
  • Шевченко Максим Алексеевич
RU2485309C1
Расходомер 1975
  • Азимов Акил Адылович
  • Юсупбеков Нодирбек Рустамбекович
  • Гулямов Шухрат Манапович
SU533824A1
Система для регулирования параметра технологического процесса 1989
  • Рябко Николай Львович
  • Аджиев Али Юсупович
  • Потапов Валерий Федорович
  • Гордин Валерий Николаевич
SU1772785A1
Устройство для испытания датчиков системы контроля теплотехнических установок 1981
  • Шмуэльсон Илья Эмильевич
  • Мельникер Григорий Семенович
  • Мачулина Людмила Прокофьевна
  • Карамнов Александр Григорьевич
  • Шемберко Валентина Петровна
SU1015195A1
Пневматический усилитель 1977
  • Грянин Валерий Иванович
SU804868A1
Тепломер 1973
  • Исмиев Экрам Абульфас Оглы
SU767571A1
СТРУЙНЫЙ ДАТЧИК РАСХОДА 2001
  • Целовальников С.П.
RU2200302C2

Реферат патента 2009 года РАСХОДОМЕР

Расходомер содержит корпус из двух частей 1, 6, подводящее сопло 2, сопло 3 подачи измеряемой среды в приемное отверстие 5 в корпусе, выходной патрубок 30. Камеры 9 и 10 корпуса, разделенные перегородкой 7 и мембраной 8, заполнены соответственно измеряемой средой и тестовой средой (жидкостью с известной плотностью: водой, спиртом, эфиром). Мембраны 11, 12 с закрепленными на них телами положительной плавучести 22 и 23 разделяют соответствующие камеры на надмембранные полости 13 и 14 и подмембранные полости 15 и 16. В каналы 19, 20 корпуса, соединяющие подмембранные полости и полость 4 между соплами, введены герметизирующие элементы 28, 29 в виде поршней, жестко закрепленных на телах положительной плавучести. Каналы 19, 20 объединены с двумя дифференциально-трансформаторными преобразователями перемещений 24, 25 мембран, связанными с аналогово-цифровой системой 31, которая соединена с однокристальным микроконтроллером 32. В качестве сердечников преобразователей 24, 25 использовано магнитопроводящее твердое тело или несмачиваемая магнитная жидкость. Изобретение обеспечивает повышение точности измерения и расширение функциональных возможностей за счет дополнительного определения плотности жидкости, а также содержания компонентов в двухкомпонентной жидкости путем измерения ее плотности. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 362 123 C2

1. Расходомер, содержащий корпус, состоящий из двух частей и включающий подводящее сопло и сопло, направляющее струю измеряемой среды в приемное отверстие, выполненное в корпусе, мембрану с телом положительной плавучести, разделяющую заполненную измеряемой средой камеру корпуса на две полости - надмембранную и подмембранную, сообщающуюся с полостью между соплами, выходной патрубок и дифференциально-трансформаторный преобразователь перемещения упругого чувствительного элемента в выходной сигнал, отличающийся тем, что в корпусе расходомера выполнена дополнительная камера, разделенная второй мембраной с телом положительной плавучести на две полости: надмембранную и подмембранную, заполненные тестовой средой - водой, спиртом, эфиром или другой тестовой жидкостью с известной плотностью, камеры корпуса разделены перегородкой и мембраной, подмембранная полость дополнительной камеры соединена каналом, содержащим мембрану, с полостью между соплами, в каналы, соединяющие подмембранные полости камер корпуса и полость между соплами, введены два герметизирующих элемента, при этом каналы объединены с двумя дифференциально-трансформаторными преобразователями перемещений мембран камер с подвижными сердечниками, преобразователи связаны с аналогово-цифровой системой, которая соединена с однокристальным микроконтроллером.

2. Расходомер по п.1, отличающийся тем, что в качестве сердечников дифференциально-трансформаторных преобразователей перемещения использовано магнитопроводящее твердое тело или несмачиваемая магнитная жидкость, помещенная в соединительные каналы.

3. Расходомер по п.2, отличающийся тем, что герметизирующие элементы выполнены в виде поршней, жестко закрепленных на телах положительной плавучести.

Документы, цитированные в отчете о поиске Патент 2009 года RU2362123C2

Расходомер 1984
  • Зарипов Мадияр Фахритдинович
  • Зайнуллин Наиль Рафкатович
  • Петрова Ирина Юрьевна
  • Газиев Алишер Хашимович
SU1174754A2
РАСХОДОМЕР 2003
  • Пугин А.М.
  • Иванова И.Р.
RU2247326C1
0
SU158745A1
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1

RU 2 362 123 C2

Авторы

Пугина Юлия Андреевна

Пугин Михаил Андреевич

Даты

2009-07-20Публикация

2007-07-05Подача