СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В ТРУБОПРОВОДАХ Российский патент 2009 года по МПК G01N27/90 G01R31/08 

Описание патента на изобретение RU2362159C1

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением.

Известен способ регистрации сигналов акустической эмиссии (АЭ) [1]. Дефект на поверхности металлического изделия, например трубопровода, находящегося за слоем диэлектрика, обнаруживают по параметрам СВЧ-волны, дифрагированной на поверхности изделия на сигналах АЭ, возникающей при истечении газа или иного продукта под давлением через сквозную щель. Схема реализации данного способа регистрации сигналов АЭ содержит СВЧ-генератор и СВЧ-приемник, передающую и приемную антенну, направленные на поверхность контролируемого изделия, которая покрыта слоем диэлектрика.

Способ реализуется следующим образом. Генерируют электромагнитную когерентную поляризованную волну СВЧ-диапазона с помощью генератора. Посредством передающей антенны излучают ее на поверхность контролируемого изделия, принимают дифрагированную электромагнитную волну приемником СВЧ. Электрический сигнал с выхода СВЧ-приемника усиливают, обрабатывают по выбранному параметру и регистрируют в блоке обработки и регистрации сигналов. Сравнивают параметры СВЧ-излучения, полученные ранее при отражении от поверхности изделия без дефектов (а, следовательно, и без присутствия акустоэмиссионных сигналов) с параметрами СВЧ-излучения, измененными при появлении акустических сигналов. По изменению параметров регистрируемого СВЧ-поля отмечают наличие сигналов АЭ и, следовательно, наличие дефекта. Данный способ позволяет дистанционно регистрировать сигналы АЭ, а посредством их и наличие дефекта, однако, он может быть использован лишь для наблюдения за участком контролируемого изделия ограниченной площади, характеризующимся наибольшей вероятностью появления в нем дефектов. Довольно низка и чувствительность метода, во-первых, из-за низкой интенсивности самого акусто-эмиссионного сигнала, а, во-вторых, из-за низкой эффективности дифракции падающего СВЧ-излучения на сигналах АЭ. С другой стороны, поскольку на приемник наряду с полезным сигналом попадает интенсивное излучение, отраженное от металлической поверхности, например трубы, то на фоне этого излучения (одинаковой частоты с полезным сигналом, но с другой фазой) сложно выделить и обработать полезный сигнал из-за низкого соотношения сигнал/шум. На формирование полезного сигнала влияют также интерференционные явления, возникающие за счет проникновения внешнего электромагнитного поля внутрь трубы (дифракция на щели), и дополнительного отражения от внутренней поверхности трубы в сторону щели. В этом случае коэффициент отражения и набег фазы являются сложными функциями как диэлектрической проницаемости покрытия трубы, так и отношения d/λ, где d - толщина стенки трубы, λ - длина зондирующей волны. Поскольку при обнаружении трещины по сигналу АЭ основным информативным параметром является фаза дифрагированной волны, а детекторы, чувствительные к фазе, также чувствительны и к амплитуде сигнала, то при реализации способа большая погрешность в обнаружении фазового сдвига обусловлена затуханием отраженной волны в слое грунта, которым может быть закрыта труба. Сильное влияние на определение местоположения трещины оказывают акустические шумы, метеоусловия и т.д. Вредному влиянию подвержены как передающий, так и приемный каналы предлагаемой диагностической системы, реализующей способ. К недостаткам следует отнести также низкую степень развязки приемного и передающего трактов. Поскольку в способе и в реализующем его устройстве положение приемника и передатчика зафиксировано в пространстве, то зона обзора контролируемой трубы фактически ограничена размером пятна, определяемым диаграммой направленности передающей антенны. Это означает, что способ-прототип не позволяет непрерывно контролировать протяженный участок трубы.

Наиболее близким к предлагаемому является способ обнаружения сквозных дефектов в трубопроводах [2], заключающийся в том, что излучают и принимают электромагнитные волны СВЧ-диапазона, используя трубопровод в качестве волновода для излучаемых электромагнитных волн, а наличие сквозного дефекта определяют по СВЧ-сигналу, принимаемому приемником, удаленным от трубопровода на расстояние L, определяемое из соотношения

где λ - длина электромагнитной СВЧ-волны, λ<1,71D, D - диаметр трубопровода;

Ро - мощность электромагнитной волны;

α - коэффициент ослабления электромагнитной волны в трубопроводе, на щели и в грунте;

G - коэффициент усиления приемника;

Ра min - пороговая мощность приемника;

L - длина непрерывно контролируемого участка трубопровода.

Недостатком этого способа является низкая точность определения местонахождения дефекта в трубопроводе и отсутствие возможности дальнейшего его уточнения.

Цель изобретения - повышение точности определения местонахождения дефекта в трубопроводе.

Для достижения этой цели в предлагаемом способе определения дефектов в трубопроводах, включающем подключение СВЧ-генератора к трубопроводу, использование трубопровода в качестве волновода для излучаемых электромагнитных волн, определение наличия дефекта по СВЧ-сигналу, перемещают приемник СВЧ-сигнала вдоль трассы трубопровода, местоположение дефекта определяют по максимальному значению принимаемого СВЧ-сигнала, координаты дефекта определяют с помощью GPS-приемника.

На чертеже представлена функциональная схема устройства, реализующего определение сквозных дефектов в трубопроводах по данному способу.

Устройство подключается к трубопроводу 1, имеющему дефект 10, через устройство ввода СВЧ-энергии 2 и содержит генератор 3, приемную антенну 4, селективный усилитель 5, детектор 6, индикатор 7, GPS-приемник 8, блок управления 9.

Принцип работы устройства, реализующего данный способ, заключается в следующем.

Создаваемый генератором 3 импульс электромагнитного излучения СВЧ-диапазона посредством устройства ввода 2 возбуждает в трубопроводе 1 электромагнитную волну. Тип и рабочую длину волны λ выбирают с учетом обеспечения приемлемого для практики затухания и стабильности структуры поля (волны) в трубопроводе диаметром D.

При передаче электромагнитной энергии по волноводам в СВЧ-технике принято работать на низшем типе (основном) колебаний (Изюмова Т.И., Свиридов В.Т. Волноводы, коаксиальные и полосовые линии. - М.: Энергия, 1975). Для круглого волновода этим типом является Н11. С учетом диаметра трубы рабочую длину волны λ выбирают из соотношения

1,31D<λ<1,71D,

где D - диаметр трубопровода.

При соблюдении этого условия в волноводе будет существовать только основная волна Н11 и передаваемая энергия не будет перераспределяться на другие типы, менее благоприятные по условиям их распространения в волноводе. По мере распространения по трубопроводу-волноводу часть энергии СВЧ-импульса расходуется на потери в стенках. При прохождении импульса по участку трубопровода-волновода с дефектом часть энергии излучается через щель (дефект) 10 в свободное пространство, являясь информативным сигналом для обнаружения и определения местоположения дефекта-щели. Этот сигнал принимается перемещаемой вдоль трассы приемной антенной 4, усиливается селективным усилителем 5 и подается на детектор 6, после чего подается на устройство управления 9 и выводится на индикатор 7. Максимальное значение СВЧ-сигнала указывает на местоположения дефекта. Координаты дефекта определяются с помощью GPS-приемника 8 и выводятся на индикатор 7.

Таким образом, за счет перемещения приемника СВЧ-сигнала вдоль трассы прокладки трубопровода и наличия GPS-приемника повышается точность определения местонахождения дефекта в трубопроводе.

Источники информации

1. Авторское свидетельство СССР №1578636, МКИ G01N 29/04. Способ регистрации сигналов акустической эмиссии / Бурыхин А.А., Горбунов В.И., Савиков А.А.

2. Патент России 2020467, МПК G01N 27/90. Способ обнаружения сквозных дефектов в трубопроводах / Арзин А.П., Жуков В.Л., Левин С.Ю., Овчинников В.П., Саяпин А.Ф., Фетисов Г.О., Шиян В.П., Штейн Ю.Г.

Похожие патенты RU2362159C1

название год авторы номер документа
СПОСОБ ОБНАРУЖЕНИЯ СКВОЗНЫХ ДЕФЕКТОВ В ТРУБОПРОВОДАХ 1991
  • Арзин А.П.
  • Жуков В.Л.
  • Левин С.Ю.
  • Овчинников В.П.
  • Саяпин А.Ф.
  • Фетисов Г.О.
  • Шиян В.П.
  • Штейн Ю.Г.
RU2020467C1
СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В ТРУБОПРОВОДАХ 2011
  • Кандаев Василий Андреевич
  • Авдеева Ксения Васильевна
RU2474812C1
СПОСОБ РЕГИСТРАЦИИ СИГНАЛОВ АКУСТИЧЕСКОЙ ЭМИССИИ В МЕТАЛЛАХ 2008
  • Горбунов Владимир Иванович
  • Суторихин Владимир Анатольевич
  • Устинов Борис Федорович
RU2372615C1
УСТРОЙСТВО ДЛЯ ЛОКАЛИЗАЦИИ МЕСТА УТЕЧКИ ЖИДКОСТИ ИЗ ТРУБОПРОВОДА 2001
  • Рогалев В.А.
  • Кармазинов Ф.В.
  • Гумен С.Г.
  • Денисов Г.А.
  • Дикарев В.И.
  • Койнаш Б.В.
RU2194919C2
СПОСОБ ГЕОРАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Савватеев Ярослав Викторович
  • Корнилов Борис Анатольевич
RU2707419C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА И ХАРАКТЕРНОГО РАЗМЕРА ТЕЧИ В ПОДЗЕМНОМ ТРУБОПРОВОДЕ 2001
  • Кармазинов Ф.В.
  • Прядкин Е.И.
  • Дикарев В.И.
RU2219429C2
Способ регистрации сигналов акустической эмиссии 1987
  • Бурыхин Александр Александрович
  • Горбунов Владимир Иванович
  • Савиков Анатолий Афанасьевич
SU1578636A1
СПОСОБ И СИСТЕМА ОТСЛЕЖИВАНИЯ ТРАЕКТОРИИ ДВИЖЕНИЯ ВНУТРИТРУБНОГО СНАРЯДА 2013
  • Майоров Сергей Николаевич
RU2574698C2
РАДИОЛОКАЦИОННЫЙ МОДУЛЬ И ИЗВЕЩАТЕЛИ ОХРАНЫ НА ЕГО ОСНОВЕ 2009
  • Первунинских Вадим Александрович
  • Лебедев Лев Евгеньевич
  • Скоробогатов Александр Афанасьевич
RU2406154C1
ВЕРТОЛЕТНЫЙ РАДИОЭЛЕКТРОННЫЙ КОМПЛЕКС 2009
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Скворцов Андрей Геннадьевич
RU2419814C1

Реферат патента 2009 года СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В ТРУБОПРОВОДАХ

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением. Технический результат заключается в повышении точности определения местонахождения дефекта в трубопроводе. Для этого в способе, включающем подключение СВЧ-генератора к трубопроводу, использование трубопровода в качестве волновода для излучаемых электромагнитных волн, определение наличия дефекта по СВЧ-сигналу, перемещают приемник СВЧ-сигнала вдоль трассы трубопровода, местоположение дефекта определяют по максимальному значению принимаемого СВЧ-сигнала, координаты дефекта определяют с помощью GPS-приемника. 1 ил.

Формула изобретения RU 2 362 159 C1

Способ обнаружения дефектов в трубопроводах, включающий подключение СВЧ-генератора к трубопроводу, использование трубопровода в качестве волновода для излучаемых электромагнитных волн, определение наличия дефекта по СВЧ-сигналу, отличающийся тем, что перемещают приемник СВЧ-сигнала вдоль трассы трубопровода, местоположение дефекта определяют по максимальному значению принимаемого СВЧ-сигнала, координаты дефекта определяют с помощью GPS-приемника.

Документы, цитированные в отчете о поиске Патент 2009 года RU2362159C1

СПОСОБ ОБНАРУЖЕНИЯ СКВОЗНЫХ ДЕФЕКТОВ В ТРУБОПРОВОДАХ 1991
  • Арзин А.П.
  • Жуков В.Л.
  • Левин С.Ю.
  • Овчинников В.П.
  • Саяпин А.Ф.
  • Фетисов Г.О.
  • Шиян В.П.
  • Штейн Ю.Г.
RU2020467C1
СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В ТРУБОПРОВОДАХ, ПРЕИМУЩЕСТВЕННО КОРРОЗИОННЫХ ДЕФЕКТОВ В ТРУБОПРОВОДАХ ВОДОСНАБЖЕНИЯ 2002
  • Кармазинов Ф.В.
  • Беляев А.Н.
  • Прядкин Е.И.
  • Дикарев В.И.
RU2229708C2
СПОСОБ ОБНАРУЖЕНИЯ КОРРОЗИОННЫХ ДЕФЕКТОВ В ТРУБОПРОВОДАХ ВОДОСНАБЖЕНИЯ 1998
  • Самойлов Е.В.
  • Семенов В.Г.
RU2138037C1
Способ обнаружения дефектов изоляции подземных трубопроводов и устройство для его реализации 1985
  • Костров Дмитрий Сергеевич
  • Бакушев Владимир Александрович
  • Корольков Владимир Юрьевич
  • Наумова Светлана Васильевна
  • Шамшетдинов Каюм Люкманович
  • Щербакова Лариса Феофановна
SU1272288A1
УСТРОЙСТВО И СПОСОБ ДЛЯ ОБНАРУЖЕНИЯ УСЛУГИ 1998
  • Франк Колин Д.
  • Хонкиз Дженнифер Энн
  • Сторм Брайен Дэвид
RU2212762C2

RU 2 362 159 C1

Авторы

Кандаев Василий Андреевич

Авдеева Ксения Васильевна

Котельников Александр Владимирович

Даты

2009-07-20Публикация

2008-04-16Подача