ГЕКСАЯДЕРНЫЕ КЛАСТЕРНЫЕ КОМПЛЕКСЫ РЕНИЯ НА ОСНОВЕ РАДИОАКТИВНЫХ ИЗОТОПОВ, ОБЛАДАЮЩИЕ ПРОТИВООПУХОЛЕВЫМИ СВОЙСТВАМИ Российский патент 2009 года по МПК A61K33/24 C01G47/00 A61P35/00 A61N5/10 A61K51/00 

Описание патента на изобретение RU2366434C1

Изобретение относится к кластерным комплексам рения на основе радиоактивных изотопов, которые могут быть использованы в области медицины, и в частности, для диагностики и в процедурах радио- и фотодинамической терапии злокачественных новообразований (раковых опухолей).

Радиотерапия является второй после хирургии наиболее важной процедурой при лечении рака. В настоящее время более 50% всех пациентов, больных раком, проходят курс радиотерапии на первой стадии лечения. Во время внешней радиотерапии здоровые ткани также неизбежно подвергаются облучению ионизирующей радиацией, что может привести к серьезному повреждению органов. Поэтому уменьшение побочных эффектов радиотерапии является очень важной задачей. Одним из наиболее обещающих путей понижения ионизирующего облучения на здоровые ткани является использование радиоактивных препаратов, которые могут быть селективно доставлены непосредственно в опухоли в виде молекулярных переносчиков.

Такой подход получил свое развитие после открытия радиоактивного генератора на основе метастабильного изотопа технеция (99mТс) [S.Jurisson, D.Berning, W.Jia, D.Ma, Coordination compounds in nuclear medicine, Chem. Rev., 1993, v.93, pp.1137-1156]. Было установлено, что некоторые типы комплексных соединений технеция, характеризующиеся определенной структурой и типом лигандов, способны к предпочтительной локализации в определенных органах, и это было использовано для получения изображений внутренних органов с помощью сцинцилляционных камер [M.J.Heeg, S.S.Jurisson, The role of inorganic chemistry in the development of radiometal agents for cancer therapy, Acc. Chem. Res., 1999, v.32, pp.1053-1060]. Последующий прогресс в данной области произвел революцию в медицинской диагностике и сделал этот подход надежным клиническим методом диагностики состояния целого ряда внутренних органов.

Дальнейшее развитие данного метода привело к использованию соединений радиоактивных изотопов рения l86Re и l88Re в качестве радиотерапевтических препаратов. Поскольку изотопы рения имеют периоды полураспада больше, чем у технеция (186Re - 90 ч; l88Re -17 ч; тогда как 99mТс - 6 ч), имея при этом сильную β-эмиссию (l86Re - 1070 keV; 188Re - 2120 keV; 99mTc - не имеет β-эмиссии), то подобные свойства комплексов рения дают возможность обработки больных тканей высокой радиоактивной дозой препаратом с меньшей массой и в течение более длительного времени [J.R.Dilworth, S.J.Parrott, The biomedical chemistry of technetium and rhenium, Chem. Soc. Rev., 1998, v.27, pp.43-55; R. Bonnett, Metal complexes for photodynamic therapy, in "Comprehensive coordination chemistry, II, From biology to nanotechnology", 2004, v.9, Applications of coordination chemistry, pp.945-1003]. До последнего времени исследования в данной области были сфокусированы на моноядерных комплексах рения, а кластерные комплексы для данных целей не использовались.

Радиофармацевтические комплексы рения на основе изотопов 186Re и l88Re находят применение в радиодиагностике и радиотерапии. Так соединение рения с HEDP (гидроксоэтилендифосфоновая кислота С(СН3)(ОН){РО(ОН)2}2) неустановленного состава использовалось для получения сцинтилляционных изображений костной ткани за счет способности дифосфонатных лигандов координироваться к ионам кальция [W.A.Volkert, Е.А.Deutsch, in Advances in Metals in Medicine, ed. M.J.Abrams and B.A.Murrer, JAI Press, USA, 1993, p.115]. Высокое сродство фосфонатов к активно растущей костной ткани используют при облегчении болей при раке костей. Комплексы рения с тетрадентатными лигандами типа N2S2 или N3S (аналоги почечному агенту MAG3 - меркаптоацетилтриглицину) обладают липофильными свойствами. Комплексы димеркаптаноянтарной кислоты широко используются для получения сцинтилляционного изображения относительно редких раковых новообразований щитовидной железы. Во всех этих случаях использовались моноядерные комплексы рения. Однако моноядерные комплексы с большими органическими лигандами характеризуются относительно малым содержанием активного компонента - атомов рения, поэтому для обработки больных тканей высокой радиоактивной дозой требуется большое количество препарата и, как следствие, это ведет к побочным эффектам - неизбежному облучению ионизирующей радиацией здоровых органов и тканей, что может привести к серьезному повреждению органов.

Задачей изобретения является расширение и создание более эффективных средств для противоопухолевой терапии. Техническим эффектом изобретения является снижение вводимой дозы препарата и понижение дозы общего облучения организма через адресную доставку препарата, содержащего кластерные комплексы рения, с высоким содержанием активного компонента, а также расширение области применения средства путем применения кластерных комплексов рения для радиотерапии и/или для фотодинамической терапии.

Задача решается тем, что гексаядерные кластерные комплексы рения на основе радиоактивных изотопов с общей формулой Re6Q8L6, где Q- S или Se, L-неорганические или органические лиганды, выбранные из ряда: CI, Br, I, CN, SCN, Н2O, ОН, ОС2Н5, замещенные пиридины, алкил- и арилфосфины, карбоксилаты, аминокислоты применяют в качестве противоопухолевого средства, а также тем, что их применяют в радиотерапии и/или фотодинамической терапии.

Первым отличительным признаком изобретения является кластерные комплексы рения формулы Re6Q8L6 на основе радиоактивных изотопов, обладающие противоопухолевыми свойствами, вторым признаком является их применение для радиотерапии и/или фотодинамической терапии.

Гексаядерные кластерные комплексы на основе радиоактивных изотопов рения l86Re и 188Re типа Re6Q8L6 представляют собой металлический кластер - октаэдр Re6, стабилизированный внутренними µ3-Q лигандами, в результате чего образуется кластерное ядро {Re6S8}2+. На чертеже приведена структура рениевого кластерного комплекса. При такой стехиометрии кластерного ядра атомы металла в {Re6Q8} оказываются координационно ненасыщенными и удовлетворение их координационных потребностей достигается за счет взаимодействия с внешними лигандами - L, при этом образуется устойчивый кластерный комплекс [Re6Q8L6]. При этом внутренние лиганды Q влияют на устойчивость комплекса, сохраняют его внутреннюю координацию (структуру комплекса), а внешние лиганды L служат для организации адресной доставки именно в пораженные ткани, органы с последующим избирательным накоплением данного кластерного соединения в таких тканях.

Такие кластерные комплексы рения отличаются более высоким содержанием атомов металла по сравнению с моноядерными комплексами рения. В зависимости от того какой внешний лиганд входит в кластерный комплекс можно изменять растворимость комплекса в водных и органических средах, а также другие свойства, что дает возможность управлять адресной доставкой таких комплексов в различные ткани организма.

Поскольку активным элементом (действующим компонентом) радиофармацевтических препаратов служат атомы металла, то кластерные комплексы рения, отличающиеся более высоким содержанием атомов металла по сравнению с моноядерными комплексами, позволят обработать больные ткани высокой радиоактивной дозой препаратом с меньшей массой (меньшим количеством дозы введенного препарата), что благоприятно для исключения возможных побочных негативных эффектов. С другой стороны, гексаядерные кластерные комплексы рения обладают сильной люминесценцией в области 650-750 нм, это свойство позволяет использовать их для фотодинамической терапии (ФДТ). Вместе с радиоактивным действием атомов металла (β-эмиссия изотопов l86Re и l88Re) наличие дополнительно люминесцентных свойств у Re6Q8L6 может привести не только к высокому лечебному эффекту при существенно меньших дозах препарата, но и, возможно, к синергетическому лечебному эффекту вследствие комплексного воздействия двух различных процедур - β-излучения (лучевой терапии) и фотолюминесценции (фотодинамической терапии). Наличие фотолюминесценции и адресная доставка этих комплексов может использоваться и для диагностики в выявлении новообразований.

Таким образом, гексаядерные кластерные комплексы на основе радиоактивных изотопов рения типа Re6Q8L6, где (Q=S, Se; L = неорганические и органические лиганды), могут использоваться в качестве действующих компонентов в препаратах, обладающих двойным лечебным эффектом, для диагностики и лечения раковых опухолей (в лучевой и/или фотодинамической терапии). Кроме того, они растворимы в воде и органических средах, что более удобно в применении этих веществ в качестве активных компонентов в фармацевтических препаратах.

Типичный способ получения кластерных комплексов рения.

Получают кластерные комплексы путем взаимодействия смеси металлического рения, жидкого брома и элементарного халькогена, например S или Se, реагенты берут в стехиометрическом количестве и при нагревании до 850°С в течение 1-2-х часов получают нерастворимое соединение Re6Q8Br2. Затем его обрабатывают расплавом гидроксида калия и получают K4Re6Q8(OH)6. Полученный растворимый комплекс K4Re6Q8(OH)6 осаждают спиртом из водного раствора. Для получения K4[Re6S8(CN)6] проводят обработку Re6S8Br2 расплавом цианида калия.

Комплексы с другими лигандами получают заменой гидроксид-лигандов в водном растворе. Так, получение устойчивого аниона производного тиогидроксокомплекса

"[Re6S8(OH)5MPEG550]4-" проводят путем замещения одной группы ОН на амфифильный сополимер (MPEG550).

Проведены систематические экспериментальные исследования по биораспределению гексаядерных кластерных комплексов [Re6Q8L6] (Q=S, Se; L=OH, CN, MPEG550) в некоторых клетках человека и внутренних органах крыс.

Пример 1. Кластерные комплексы [Re6Q8(OH)6] (Q=S и/или Se) и производный тиогидроксокомплекс "[Re6S8(OH)5MPEG550]", полученные типичным способом, использовали в экспериментальных исследованиях. Методами конфокальной микроскопии и проточной цитометрией изучено поглощение клетками шейного аденокарцинома человека (HeLa) водных растворов кластерных комплексов [Re6Q8(OH)6] (Q=S, Se) и производного тиогидроксокомплекса "[Re6S8(OH)5MPEG550]". Установлено, что кластерные комплексы усваиваются клетками, локализуясь в ядрах. Эксперименты на других линиях клеток - легочные эпителиальные раковые образования человека А549 и человеческая остеосаркома (HOS), показали такие же результаты.

Пример 2. Кластерный комплекс K4[Re6S8(CN)6], полученный типичным способом, использовали для изучения биораспределения кластерных комплексов рения в органах животных в качестве тестируемого вещества. Распределение и приоритетное накопление тестируемого вещества во внутренних органах лабораторных крыс определено в формате острой токсичности с однократным введением препарата в дозе 1/5LD50. Полученные данные показали, что наибольшее накопление рения регистрируется в печени - 1,83 и далее по убыванию: мозговое вещество почек (1,70), селезенка (1,52), корковое вещество почек (0,87), миокард левого желудочка сердца (0,38), бедренная мышца (0,33), красный костный мозг (0,25). Указанные особенности распределения рения свидетельствуют о том, что комплекс, накапливаясь преимущественно в печени, возможно, участвует в метаболических процессах. Накопление тестируемого вещества в мозговом веществе почек свидетельствует о том, что оно экскретируется почками, так как именно в этой части почек сосредоточены дистальные канальцы и собирательные трубочки, формирующие терминальную мочу. Накопление рения в селезенке можно связать с избирательным накоплением данного кластерного соединения в иммунных структурах органа.

Эти исследования показали, что кластерные комплексы перспективны для использования данных соединений для разработки препаратов, предназначенных для лечения лимфопролиферативных заболеваний и, прежде всего, лимфом.

Таким образом преимущества предлагаемых веществ перед существующими аналогами состоит в их высоком лечебном эффекте и расширении области применения, основанном на комплексном воздействии радио- и/или

фотодинамической терапии (УФ излучения), простоте синтеза препаратов и сравнительно невысокой их стоимости. Высокая эффективность лечебного воздействия позволит существенно понизить дозы применяемого препарата и понизить дозы общего облучения организма через адресную доставку препарата, содержащего полиядерные (кластерные) комплексы рения, с высоким содержанием активного компонента.

Похожие патенты RU2366434C1

название год авторы номер документа
РЕНТГЕНОКОНТРАСТНОЕ ВЕЩЕСТВО (ВАРИАНТЫ) 2014
  • Миронов Юрий Владимирович
  • Федоров Владимир Ефимович
  • Брылев Константин Александрович
  • Шестопалов Михаил Александрович
  • Хлесткин Вадим Камильевич
  • Покушалов Евгений Анатольевич
  • Кретов Евгений Иванович
  • Сергеевичев Давид Сергеевич
  • Стрельников Артем Григорьевич
  • Нарышкин Иван Андреевич
  • Караськов Александр Михайлович
  • Иванов Антон Андреевич
RU2574883C2
МОНОЯДЕРНЫЕ ДИНИТРОЗИЛЬНЫЕ КОМПЛЕКСЫ ЖЕЛЕЗА, СПОСОБ ПОЛУЧЕНИЯ МОНОЯДЕРНЫХ ДИНИТРОЗИЛЬНЫХ КОМПЛЕКСОВ ЖЕЛЕЗА, ДОНОР МОНООКСИДА АЗОТА, ПРИМЕНЕНИЕ МОНОЯДЕРНОГО ДИНИТРОЗИЛЬНОГО КОМПЛЕКСА ЖЕЛЕЗА В КАЧЕСТВЕ ПРОТИВООПУХОЛЕВОГО ЛЕКАРСТВЕННОГО СРЕДСТВА 2011
  • Санина Наталия Алексеевна
  • Козуб Галина Ивановна
  • Кондратьева Татьяна Александровна
  • Алдошин Сергей Михайлович
RU2494104C2
КОМПОЗИЦИЯ ДЛЯ ВИЗУАЛИЗАЦИИ И ПОВРЕЖДЕНИЯ КЛЕТОК-МИШЕНЕЙ 2015
  • Воденеев Владимир Анатольевич
  • Звягин Андрей Васильевич
  • Балалаева Ирина Владимировна
  • Шилягина Наталья Юрьевна
  • Юдинцев Андрей Владимирович
  • Сень Алексей Васильевич
  • Ермилов Сергей Алексеевич
RU2611653C1
Способ получения трис(2-карбоксиэтил)фосфиновых октаэдрических халькогенидных кластерных комплексов рения (варианты) 2015
  • Миронов Юрий Владимирович
  • Шестопалов Михаил Александрович
  • Брылев Константин Александрович
  • Иванов Антон Андреевич
RU2624776C2
Радиофармацевтическая композиция для лечения боли при воспалительных заболеваниях суставов 2017
  • Кодина Галина Евгеньевна
  • Малышева Анна Олеговна
  • Клементьева Ольга Евгеньевна
  • Лямцева Елена Александровна
  • Таратоненкова Надежда Александровна
  • Жукова Мария Валерьевна
  • Красноперова Алина Сергеевна
  • Лунев Александр Сергеевич
RU2662088C1
ДЕНДРИМЕРНЫЕ КОМПОЗИЦИИ, СПОСОБЫ ИХ СИНТЕЗА И ИХ ПРИМЕНЕНИЕ 2014
  • Белхадж-Тахар Хафид
  • Садег Нуредин
  • Кулэ Ивон
RU2635557C2
СПОСОБ КОМБИНИРОВАННОГО ЛЕЧЕНИЯ МЕСТНО-РАСПРОСТРАНЕННЫХ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ТРАХЕИ И/ИЛИ БРОНХОВ 2004
  • Гельфонд Марк Львович
  • Арсеньев Андрей Иванович
  • Барчук Алексей Степанович
  • Щербаков Александр Михайлович
  • Канаев Сергей Васильевич
  • Шулепов Александр Вениаминович
RU2286817C2
Способ получения радиомеченных частиц карбоната кальция с использованием дефероксамина в качестве хелатирующего вещества 2022
  • Ахметова Дарья Рамилевна
  • Зюзин Михаил Валерьевич
  • Карпов Тимофей Евгеньевич
  • Митусова Ксения Андреевна
  • Постовалова Алиса Сергеевна
  • Рогова Анна
  • Тимин Александр Сергеевич
  • Якубова Анастасия Артуровна
  • Антуганов Дмитрий Олегович
  • Сысоев Дмитрий Сергеевич
RU2806148C1
СПОСОБ ЛЕЧЕНИЯ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ 2004
  • Кешелава Виктор Владимирович
  • Ляшенко Алла Анатольевна
  • Северин Евгений Сергеевич
RU2271831C1
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ПЕРЕВИВНОЙ ОПУХОЛИ КАРЦИНОМА ЭРЛИХА МЫШЕЙ С ФОТОСЕНСИБИЛИЗАТОРОМ ХЛОРИНОВОГО РЯДА 2022
  • Абрамова Ольга Борисовна
  • Дрожжина Валентина Владимировна
  • Козловцева Екатерина Александровна
  • Сивоволова Татьяна Петровна
  • Островерхов Петр Васильевич
  • Грин Михаил Александрович
  • Кирин Никита Сергеевич
  • Иванов Сергей Анатольевич
  • Каприн Андрей Дмитриевич
RU2788766C2

Реферат патента 2009 года ГЕКСАЯДЕРНЫЕ КЛАСТЕРНЫЕ КОМПЛЕКСЫ РЕНИЯ НА ОСНОВЕ РАДИОАКТИВНЫХ ИЗОТОПОВ, ОБЛАДАЮЩИЕ ПРОТИВООПУХОЛЕВЫМИ СВОЙСТВАМИ

Изобретение относится к области медицины и фармацевтики и касается применения гексаядерного кластерного комплекса рения состава K4[Re6S8(CN)6] на основе радиоактивных изотопов в качестве противоопухолевого средства в радиотерапии и/или фотодинамической терапии. Изобретение позволяет снизить дозы общего облучения организма через адресную доставку препарата. 1 ил.

Формула изобретения RU 2 366 434 C1

Применение гексаядерного кластерного комплекса рения состава K4[Re6S8(CN)6] на основе радиоактивных изотопов в качестве противоопухолевого средства в радиотерапии и/или фотодинамической терапии.

Документы, цитированные в отчете о поиске Патент 2009 года RU2366434C1

СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ 1990
  • Роберто Паскалини[Fr]
  • Лучиано Могон[It]
  • Андре Барди[Fr]
  • Андриано Дуатти[It]
  • Андреа Марчи[It]
RU2026300C1
RU 96105387 A, 10.06.1998
СПОСОБ ПОЛУЧЕНИЯ РАДИОТЕРАПЕВТИЧЕСКОГО ПРЕПАРАТА 1999
  • Басманов В.В.
  • Колесник О.В.
RU2164420C2
RU 2005123799 A, 27.03.2006
RU 2005101622 A, 27.01.2006
СПОСОБ ПОЛУЧЕНИЯ ТЕТРАТИОРЕНАТА ТЕТРАЭТИЛАММОНИЯ 1992
  • Миронов Ю.В.
  • Федин В.П.
  • Федоров В.Е.
RU2057135C1

RU 2 366 434 C1

Авторы

Федоров Владимир Ефимович

Миронов Юрий Владимирович

Наумов Николай Геннадьевич

Брылев Константин Александрович

Даты

2009-09-10Публикация

2007-12-07Подача