КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ ГЕРМАНИЯ Российский патент 2009 года по МПК C22C28/00 C23C30/00 

Описание патента на изобретение RU2367701C2

Изобретение относится к области разработки прецизионных сплавов с особыми физико-химическими свойствами - сплава на основе германия, предназначенного для получения пленок и покрытий, работающих в агрессивных средах, в частности в морской воде. Пленки и покрытия из предлагаемого сплава могут применяться в качестве коррозионно-стойких элементов систем управления в прецизионном приборостроении, в виде тонких резистивных пленок и покрытий схемных элементов сопротивления, работающих при воздействии агрессивных сред.

Основные требования к резистивным материалам предъявляются к их временной и температурной стабильности, а также адгезионной и когезионной прочности наносимых пленок и покрытий. Определяющим фактором при этом является структура сплава, ее устойчивость к временным и температурным воздействиям при работе в агрессивных средах.

Известны сплавы на основе германия, прежде всего для литья микропроводов [1], в том числе с высокой коррозионной стойкостью [2, 3]. Однако в силу специфики процесса литья микропроводов эти сплавы непригодны для получения тонких пленок и покрытий методами гетерофазного переноса [4], т.к. не обеспечивают требуемой для этих методов адгезии и когезионной прочности наносимых пленок и покрытий. Кроме того, как показали проведенные нами испытания, другие известные аналоги являются нестойкими при длительном агрессивном воздействии морской воды.

Наиболее близким по технической сущности и достигаемому эффекту является сплав по авторскому свидетельству 406937 (МКИ C22C 31/00), содержащий компоненты (мас.%):

Хром 26-31 Никель 10-14 Кремний 1-2 Германий Остальное

Известный сплав обладает недостаточной коррозионной стойкостью в морской воде, а также не обеспечивает высокую адгезионную и когезионную прочность наносимых пленок и покрытий.

Техническим результатом изобретения является достижение высокой коррозионной стойкости в морской воде и повышение адгезионной и когезионной прочности наносимых пленок и покрытий.

Технический результат достигается за счет того, что предлагаемый сплав на основе германия, содержащий хром, дополнительно содержит цирконий и церий при следующем соотношении компонентов (мас.%):

Хром 20-25 Цирконий 5-9 Церий 0,1-0,9 Германий Остальное

В связи с отсутствием теоретических предпосылок о легировании сплавов при достаточно большом содержании легирующих элементов соотношение компонентов в предлагаемом сплаве подбиралось экспериментальным методом итераций.

Экспериментально установлено, что при содержании в сплаве хрома менее 20% его коррозионная стойкость в морской воде очень низкая, при количестве хрома более 25% не удается наладить устойчивость процесса нанесения покрытий - технологичность сплава весьма низкая.

Введение циркония в количестве 5-9% обеспечивает существенное измельчение структуры и появление наноразмерных выделений (размером от 30 до 150 нм). Это обеспечивает, во-первых, существенное улучшение технологических свойств при нанесении покрытий: получены пленки методом сверхзвукового холодного газодинамического напыления [5] толщиной от 20 до 100 мкм, имеющих высокую адгезию к металлическим подложкам (сталь, титан и др.) Во-вторых, достигается высокая коррозионная стойкость в морской воде.

При содержании циркония менее 5% этого эффекта не наблюдается, при содержании циркония более 9% не удается получить нанокристаллическую структуру и обеспечить тем самым высокую адгезионную прочность [6].

Однако из-за наличия неметаллических включений (оксиды германия) покрытие имеет низкую когезионную прочность, приводящую к охрупчиванию покрытий.

Эффективным раскислителем для сплавов системы германий-хром является церий, будучи введенным в малых количествах (от 0,1 до 0,9%), обеспечивает практически полное удаление оксидов и обеспечивает тем самым высокую когезионную прочность покрытий.

При меньшем чем 0,1% количестве церия этот эффект не наблюдается; при количестве церия более 0,9% он выделяется в виде самостоятельной фазы и снижает адгезионную прочность покрытия.

Сплавы из предложенных составов и прототипа выплавлялись в индукционной печи типа «УПИ-120-2» с рабочей частотой 880 кГц в алундовых тиглях. Масса слитка составляла 1 кг. После получения слиток измельчался на щековой дробилке типа ДЛЩ до фракции 3-5 мм, после чего измельчался до фракции 50 мкм на дезинтеграторной установке типа «ДЕЗИ-15». Оперативный контроль фракционного состава порошков проводился с использованием классификатора типа «ИГ-6У», анализатора ситового типа «А-20» и лазерного анализатора частиц типа «ЛАСКА-1К». Из полученного порошка были получены покрытия методом сверхзвукового холодного газодинамического напыления на установке типа «ДИМЕТ-3». В качестве подложки применялась сталь типа Х15Ю5. Толщина полученных покрытий варьировалась от 20 до 100 мкм. Испытания на коррозионную стойкость проводились по ГОСТу 9.908.-86. Испытания на адгезионную и когезионную прочность проводились клеевым методом. Клеевой метод является наиболее простым при количественной оценке прочности покрытия. Для проведения измерения прочность клея должна превышать или быть сравнимой с прочностью сцепления покрытия к подложке. Свойства сплавов предложенных составов по механическим характеристикам и коррозионной стойкости в морской воде существенно превосходят известные аналоги.

Результаты испытаний предлагаемого коррозионно-стойкого сплава в сравнении с прототипом и составами сплава за пределами предлагаемого сплава приведены в таблице 1.

Источники информации

1. Е.Я.Бадинтер и др. "Литой микропровод и его свойства". - Изд. «Штинца», г.Кишинев, 1973 г., стр.234.

2. Авторское свидетельство №393345

3. Авторское свидетельство №5847363.

4. В.С.Клубникин (редакция). Труды 5-й международной конференции «Пленки и покрытия 98», 1998 г., стр.20.

5. А.Ф.Васильев, Д.А.Геращенков, М.А.Юрков «Износо- и коррозионно-стойкие наноструктурированные покрытия с регулируемой твердостью, получаемые методом сверхзвукового холодного газодинамического напыления». Сборник докладов 2-го международного научно-технического симпозиума «Наноструктурные функциональные покрытия и материалы для промышленности» в рамках Харьковской нанотехнологической Ассамблеи, 2007.

6. Р.А.Андриевский. Наноматериалы: концепция, современные проблемы // Российский химический журнал, 2002, XLVI, №5, стр.50.

Похожие патенты RU2367701C2

название год авторы номер документа
СПЛАВ НА ОСНОВЕ СЕРЕБРА ДЛЯ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ 2007
  • Фармаковский Борис Владимирович
  • Сомкова Екатерина Александровна
  • Сергеева Оксана Сергеевна
  • Юрков Максим Анатольевич
  • Точенюк Дарья Александровна
  • Быстров Руслан Юрьевич
  • Семенов Александр Сергеевич
  • Песков Тимофей Владимирович
  • Геращенков Дмитрий Анатольевич
RU2350673C1
ИЗНОСО-КОРРОЗИОННОСТОЙКИЙ МЕДНО-НИКЕЛЕВЫЙ СПЛАВ 2013
  • Шолкина Марина Николаевна
  • Федорченко Валерия Борисовна
  • Крылов Павел Сергеевич
  • Егорова Екатерина Эдуардовна
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Шуба Иван Михайлович
  • Юрков Максим Анатольевич
RU2553799C2
ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННО-СТОЙКИХ ПОКРЫТИЙ НА КОНСТРУКЦИОННЫЕ ЭЛЕМЕНТЫ МИКРОПЛАЗМЕННЫМ ИЛИ СВЕРХЗВУКОВЫМ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ 2011
  • Бобкова Татьяна Игоревна
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Шолкин Сергей Евгеньевич
  • Сомкова Екатерина Александровна
RU2476616C1
СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННОСТОЙКИХ ПОКРЫТИЙ МИКРОПЛАЗМЕННЫМ ИЛИ ХОЛОДНЫМ СВЕРХЗВУКОВЫМ НАПЫЛЕНИЕМ 2013
  • Бобкова Татьяна Игоревна
  • Бурьян Марина Андреевна
  • Геращенкова Елена Юрьевна
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Деев Артем Андреевич
RU2527543C1
АМОРФНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ МИКРОПРОВОДОВ 2008
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Коркина Маргарита Александровна
  • Кузьмин Константин Анатольевич
  • Тараканова Татьяна Андреевна
  • Земляницын Евгений Юрьевич
RU2424349C2
КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN 2013
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Юрков Максим Анатольевич
  • Фармаковская Алина Яновна
  • Низкая Анастасия Вячеславовна
  • Ковалева Анастасия Андреевна
  • Деев Артем Андреевич
  • Черныш Алексей Алексадрович
  • Елисеев Александр Андреевич
  • Бобкова Татьяна Игоревна
RU2539553C1
Способ получения функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB 2021
  • Геращенкова Елена Юрьевна
  • Фармаковский Борис Владимирович
  • Петров Сергей Николаевич
  • Геращенков Дмитрий Анатольевич
  • Бобкова Татьяна Игоревна
  • Старицын Михаил Владимирович
RU2791261C1
Износо-коррозионностойкий сплав на медно-никелевой основе 2023
  • Быстров Руслан Юрьевич
  • Старицын Михаил Владимирович
  • Петров Сергей Николаевич
  • Кубанцев Виктор Иванович
  • Самоделкин Евгений Александрович
  • Фармаковский Борис Владимирович
  • Шакиров Иван Викторович
RU2814118C1
КОМПОЗИЦИОННЫЙ НАНОСТРУКТУРИРОВАННЫЙ ПОРОШОК ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ 2013
  • Геращенкова Елена Юрьевна
  • Самоделкин Евгений Александрович
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Орыщенко Алексей Сергеевич
RU2553763C2
СПЛАВ НА ОСНОВЕ КВАЗИКРИСТАЛЛА СИСТЕМЫ Al-Cu-Fe ДЛЯ НАНЕСЕНИЯ ИЗНОСОСТОЙКОГО, НАНОСТРУКТУРНОГО ПОКРЫТИЯ 2009
  • Пескова Анна Сергеевна
  • Виноградова Татьяна Сергеевна
  • Фармаковский Борис Владимирович
  • Улин Игорь Всеволодович
  • Юрков Максим Анатольевич
  • Шолкин Сергей Евгеньевич
  • Михеева Маргарита Николаевна
RU2434077C2

Реферат патента 2009 года КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ ГЕРМАНИЯ

Изобретение относится к разработке прецизионных сплавов с особыми физико-химическими свойствами - сплава на основе германия для получения пленок и покрытий, работающих в агрессивных средах, в частности в морской воде. Пленки и покрытия из предлагаемого сплава могут применяться в качестве коррозионно-стойких элементов систем управления в прецизионном приборостроении, в виде тонких резистивных пленок и покрытий схемных элементов сопротивления, работающих при воздействии агрессивных сред. Изобретение направлено на достижение высокой коррозионной стойкости в морской воде и повышение технологических характеристик при нанесении пленок и покрытий. Оптимальный по достигнутому эффекту является сплав при следующем соотношении компонентов, мас.%: хром 20,0-25,0; цирконий 5,0-9,0; церий 0,1-0,9; германий - остальное. Характеристики предложенного сплава: коррозионная стойкость 0,001-0,005 мм/год, адгезия пленок 8-12 МПа, когезия пленок 6,5-10,2 МПа. Пленки представляют собой наноструктурную систему с выделением наночастиц размером от 30 до 150 нм. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 367 701 C2

1. Коррозионно-стойкий сплав на основе германия, содержащий хром, отличающийся тем, что он дополнительно содержит цирконий и церий при следующем соотношении компонентов, мас.%:
Хром 20,0-25,0 Цирконий 5,0-9,0 Церий 0,1-0,9 Германий остальное

2. Сплав по п.1, отличающийся тем, что он используется для получения нанокристаллической структуры с размерами частиц от 30 до 150 нм в наносимом покрытии.

Документы, цитированные в отчете о поиске Патент 2009 года RU2367701C2

СПЛАВ НА ОСНОВЕ ГЕРМАНИЯ 0
  • Е. Выдревич, В. И. Вахрамеев, Т. А. Лаврут, Т. А. Курбанова, С. И. Субботина, Б. В. Фармаковский Е. В. Шувалов
SU406937A1
СПЛАВ НА ОСНОВЕ ГЕРМАНИЯ 0
  • Т. А. Лаврут, С. И. Субботина, Б. В. Фармаковский Е. В. Шувалов
SU393345A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1

RU 2 367 701 C2

Авторы

Сомкова Екатерина Александровна

Васильев Алексей Филлипович

Кузнецов Павел Алексеевич

Сергеева Оксана Сергеевна

Фармаковский Борис Владимирович

Самоделкин Евгений Александрович

Даты

2009-09-20Публикация

2007-12-07Подача