ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННО-СТОЙКИХ ПОКРЫТИЙ НА КОНСТРУКЦИОННЫЕ ЭЛЕМЕНТЫ МИКРОПЛАЗМЕННЫМ ИЛИ СВЕРХЗВУКОВЫМ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ Российский патент 2013 года по МПК C22C19/05 C23C24/04 

Описание патента на изобретение RU2476616C1

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве исходного материала для получения износо- и коррозионно-стойких покрытий на функционально-конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического напыления.

Известны сплавы системы Ni-Cr-Mo, в том числе:

- сплав на основе никеля, применяемый для нанесения защитных покрытий холодным газодинамическим напылением составом (мас.%): кобальт 0-35.0, хром 10,0-25,0, железо 0-35,0, алюминий 6,0-20,0, платина 0-35,0, гафний 1,0-5,0, кремний 1,0-6,0, ниобий 0-15,0, цирконий 0-5,0, тантал 0-5,0, рений 0-5,0, рутений 0-5,0, бор 0-1,0, углерод 0-0,2, иттрий 0,1-0,7, никель - остальное (US 2008/0038575 Al, С22С 19/05, 14.02.2008);

- аморфный, износостойкий наноструктурированный сплав для изготовления элементов оборудования и нагревательных систем, работающих в условиях трения и повышенного износа на основе никеля составом (мас.%): хром 18,0-40,0, молибден 30,0-40,0, церий 0,6-1,2, цирконий 3,0-5,0, карбид вольфрама 6,0-8,0, никель - остальное (РФ патент №2418091, С22С 45/04, 19/05, 18.11.2009);

- аморфный износостойкий наноструктурированный сплав на основе никеля системы Ni-Cr-Mo-WC-Ce составом (мас.%): хром 18,0-40,0, молибден 30,0-40,0, церий 0,6-1,2, цирконий 3,0-5,0, карбид вольфрама 6,0-8,0, остальное - никель (РФ патент №2418091, С22С 45/04, 19/05);

- аморфный прецизионный сплав для изготовления высокопрочных лент, волокон и микропроводов с большим коэффициентом тензочувствительности на основе никеля составом (% мас.): хром 10,0-20,0, молибден 25,0-40,0, кремний 6,0-7,5, бор 4,0-5,0, церий 0,8-1,5, остальное - никель (РФ патент №2219279 от 04.03.2002);

- высокопрочный аморфный сплав для изготовления микропроводов в стеклянной изоляции и тонких лент на основе никеля составом (мас.%): хром 10,0-40,0, молибден 25,0-42,0, кремний 0,6-6,0, бор 0,3-3,0, цирконий 1,2-5,0, церий, лантан, неодим или празеодим 0,1-1,8, иттрий 0,1-1,5, остальное - никель (US 7172661 от 06.02.2007).

Наиболее близким к заявляемому и взятым нами за прототип является сплав на основе никеля, применяемый для нанесения защитных покрытий холодным газодинамическим напылением составом (мас.%): кобальт 0-35,0, хром 10,0-25,0, железо 0-35,0, алюминий 6,0-20,0, платина 0-35,0, гафний 1,0-5,0, кремний 1,0-6,0, ниобий 0-15,0, цирконий 0-5,0, тантал 0-5,0, рений 0-5,0, рутений 0-5,0, бор 0-1,0, углерод 0-0,2, иттрий 0,1-0,7, никель - остальное (US 2008/0038575 Al, С22С 19/05, 14.02.2008).

Недостатком известного сплава является относительно узкий интервал рабочих температур в положительной и отрицательной областях за счет охрупчивания. В настоящее время существенно ужесточились требования к конструкционным элементам, работающим в экстремальных условиях эксплуатации при криогенных температурах (-196°С и ниже) и при повышенных и высоких (до 950°С). Известный сплав имеет диапазон рабочих температур от -50°С до 700°С. При более высоких и криогенных температурах происходит интенсивное разрушение материала.

Техническим результатом изобретения является создание сплава, обладающего работоспособностью в более широком интервале температур от -196°С до 950°С.

Технический результат достигается за счет того, что в сплав, содержащий никель, хром, железо, иттрий и алюминий, дополнительно введены молибден, германий, церий и лантан в следующем соотношении компонентов (мас.%):

хром 14,0-18,0

молибден 33,0-40,0

железо 1-7,5

алюминий 1-7,3

германий 2,0-6,0

церий 0,2-0,4

иттрий 0,2-0,4

лантан 0,2-0,4

никель - остальное,

при этом сплав содержит интерметаллид Fe2Al5 в количестве 2,0-15,0%.

Основанием для сплава является Р-фаза составом Cr18Mo42Ni40. С целью повышения верхнего предела интервала положительных рабочих температур в сплаве образуется интерметаллид системы Fe2Al5 с температурой плавления 1171°С в количестве 2,0-15,0%. Учитывая узкий интервал существования указанного интерметаллидного соединения, количество алюминия в нем должно быть в интервале от 53,0 до 55,0 мас.%. Снижение содержания хрома, молибдена и никеля не обеспечивает образования Р-фазы, что ведет к снижению положительных рабочих температур. Повышение содержания указанных элементов ведет к охрупчиванию сплава. Для исключения охрупчивания сплава в области криогенных температур, вводится дополнительная добавка германия в количестве 2,0-6,0%. Экспериментальные исследования показывают, что требуемый эффект расширения температурного диапазона наблюдается с введением указанных компонентов более 2,0%. При добавлении интерметаллида Fe2Al5 более 15,0% и Ge более 6,0% наблюдается повышение твердости и значительное охрупчивание сплава, что ведет к растрескиванию покрытий, получаемых на его основе, и делает его непригодным для дальнейшего использования.

В качестве рафинирующих добавок выступают Се, Y и La. Комплексное введение этих добавок, суммарное количество которых не должно превышать 1,0%, а соотношение между ними должно быть близким к 1:1:1, что обеспечивает удаление из прецизионного сплава кислорода, азота и водорода, так как Се, Y и La имеют наибольшее сродство к указанным компонентам соответственно.

Практическая реализация предлагаемого технического решения выполнялась по следующей схеме: выплавка исходного сплава методом прямого сплавления компонентов; дробление полученного слитка; нанесение покрытий из сплава методами микроплазменного и сверхзвукового холодного газодинамического напыления.

Выплавка сплава производилась в высокочастотном индукторе с рабочей частотой 440 кГц в алундовых тиглях №3 или №4 в атмосфере аргона. Последовательность введения шихтовых компонентов следующая:

(Ni+Cr)→Mo→(Fe+Al)→Ge→(Ce+Y+La).

Масса получаемых слитков 0,7-0,8 кг.

Дробление полученного слитка производилось последовательно на щековой дробилке до фракции 3-5 мм, а затем на дезинтеграторной установке типа ДЕЗИ-15 до фракции 20-100 мкм.

Нанесение покрытий из полученного таким образом порошка производилось двумя методами:

- сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3. Температура гетерофазного потока при напылении не превышала 130°С при скоростях частиц 660-825 м/с, что обеспечивает практически полное отсутствие пор в покрытии;

- микроплазменного напыления на установке типа УГНП 2/2250. Кратковременный нагрев напыляемого материала из-за кратковременного пребывания порошка в плазменной струе обеспечивает частичное проплавление порошка, что способствует высокой адгезии, одновременно не изменяя фазового состава.

Толщина покрытий, формируемых перечисленными способами, составляет 30-50 мкм, что обеспечивает требуемые эксплуатационные характеристики. Исследования микротвердости полученных покрытий проводились при помощи микротвердомера НаноСкан 3D. Результаты исследования приведены в таблице.

Для определения работоспособности покрытия в экстремальных условиях было проведено 8 циклов теплонагружения от -196°С до 950°С. Проведенные исследования показали, что воздействие как криогенных, так и высоких температур не изменяют характеристик покрытия, так как не приводят к фазовым превращениям.

Для определения износо- и коррозионно-стойкости проведены испытания коррозионного поведения сплава, нанесенного на некорродирующую в солевом растворе медную подложку в соответствии с ГОСТ 9.905-82. Образцы погружали в синтетическую агрессивную среду, где выдерживались в течение 40 часов при температуре 20±2°С. Результаты исследований приведены в таблице.

Как видно из таблицы, сплав под №2 обладает высокими эксплуатационными характеристиками, удовлетворяющими требованиям к материалам, работающим в экстремальных условиях.

Похожие патенты RU2476616C1

название год авторы номер документа
СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННОСТОЙКИХ ПОКРЫТИЙ МИКРОПЛАЗМЕННЫМ ИЛИ ХОЛОДНЫМ СВЕРХЗВУКОВЫМ НАПЫЛЕНИЕМ 2013
  • Бобкова Татьяна Игоревна
  • Бурьян Марина Андреевна
  • Геращенкова Елена Юрьевна
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Деев Артем Андреевич
RU2527543C1
ИЗНОСО-КОРРОЗИОННОСТОЙКИЙ МЕДНО-НИКЕЛЕВЫЙ СПЛАВ 2013
  • Шолкина Марина Николаевна
  • Федорченко Валерия Борисовна
  • Крылов Павел Сергеевич
  • Егорова Екатерина Эдуардовна
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Шуба Иван Михайлович
  • Юрков Максим Анатольевич
RU2553799C2
Износо-коррозионностойкий сплав на медно-никелевой основе 2023
  • Быстров Руслан Юрьевич
  • Старицын Михаил Владимирович
  • Петров Сергей Николаевич
  • Кубанцев Виктор Иванович
  • Самоделкин Евгений Александрович
  • Фармаковский Борис Владимирович
  • Шакиров Иван Викторович
RU2814118C1
Износостойкий резистивный сплав на основе меди с отрицательным температурным коэффициентом сопротивления 2022
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Бобкова Татьяна Игоревна
  • Гошкодеря Михаил Евгениевич
RU2796582C1
КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN 2013
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Юрков Максим Анатольевич
  • Фармаковская Алина Яновна
  • Низкая Анастасия Вячеславовна
  • Ковалева Анастасия Андреевна
  • Деев Артем Андреевич
  • Черныш Алексей Алексадрович
  • Елисеев Александр Андреевич
  • Бобкова Татьяна Игоревна
RU2539553C1
СПЛАВ НА ОСНОВЕ СИСТЕМЫ НИКЕЛЬ-ХРОМ 2014
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Юрков Максим Анатольевич
  • Фармаковская Алина Яновна
  • Низкая Анастасия Вячеславовна
  • Бобкова Татьяна Игоревна
  • Ешмеметьева Екатерина Николаевна
  • Масайло Дмитрий Валерьевич
RU2561627C1
Способ получения функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB 2021
  • Геращенкова Елена Юрьевна
  • Фармаковский Борис Владимирович
  • Петров Сергей Николаевич
  • Геращенков Дмитрий Анатольевич
  • Бобкова Татьяна Игоревна
  • Старицын Михаил Владимирович
RU2791261C1
СПЛАВ НА ОСНОВЕ НИОБИЯ ДЛЯ ФОРМИРОВАНИЯ 3D-ИЗДЕЛИЙ СЛОЖНОЙ ФОРМЫ И ПОКРЫТИЙ 2016
  • Бобкова Татьяна Игоревна
  • Линова Юлия Владимировна
  • Грибанова Валерия Борисовна
  • Святышева Екатерина Вадимовна
  • Новоскольцев Никита Станиславович
  • Фармаковский Борис Владимирович
RU2614230C1
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ) 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
RU2353691C2
ЖАРОПРОЧНЫЙ СПЛАВ 2011
  • Орыщенко Алексей Сергеевич
  • Уткин Юрий Алексеевич
RU2447172C1

Реферат патента 2013 года ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННО-СТОЙКИХ ПОКРЫТИЙ НА КОНСТРУКЦИОННЫЕ ЭЛЕМЕНТЫ МИКРОПЛАЗМЕННЫМ ИЛИ СВЕРХЗВУКОВЫМ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического напыления. Сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением содержит, мас.%: хром 14,0-18,0, молибден 33,0-40,0, железо 1,0-7,5, алюминий 1,0-7,3, германий 2,0-6,0, церий 0,2-0,4, иттрий 0,2-0,4, лантан 0,2-0,4, никель - остальное. Содержание интерметаллида Fe2Al5 в сплаве составляет 2-15%. Технический результат - создание сплава, обладающего работоспособностью в более широком интервале температур от -196°С до 950°С. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 476 616 C1

1. Сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением, содержащий хром, железо, алюминий и иттрий, отличающийся тем, что он дополнительно содержит молибден, германий, церий, лантан при следующем соотношении компонентов, мас.%:
хром 14,0-18,0 молибден 33,0-40,0 железо 1,0-7,5 алюминий 1,0-7,3 германий 2,0-6,0 церий 0,2-0,4 иттрий 0,2-0,4 лантан 0,2-0,4 никель остальное,


при этом содержание интерметаллида Fe2Al5 в сплаве составляет 2-15%.

2. Сплав по п.1, отличающийся тем, что суммарное содержание иттрия, церия и лантана не превышает 1,0 мас.%.

Документы, цитированные в отчете о поиске Патент 2013 года RU2476616C1

Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
СОСТАВ ДЛЯ ПОКРЫТИЙ И СПОСОБ ЕГО НАНЕСЕНИЯ 1998
  • Бузник В.М.
  • Цветников А.К.
  • Алхимов А.П.
  • Лаврушин В.В.
  • Ломовский О.И.
  • Беляев Е.Ю.
RU2149218C1
МЕТАЛЛИЧЕСКОЕ ПОКРЫТИЕ (ВАРИАНТЫ) И СПОСОБ ЕГО НАНЕСЕНИЯ 2003
  • Бирс Рассел Альберт
  • Нетцел Аллан Э.
  • Хан Абдус
RU2249060C2
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1

RU 2 476 616 C1

Авторы

Бобкова Татьяна Игоревна

Васильев Алексей Филиппович

Фармаковский Борис Владимирович

Шолкин Сергей Евгеньевич

Сомкова Екатерина Александровна

Даты

2013-02-27Публикация

2011-11-18Подача