КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN Российский патент 2015 года по МПК C22C19/07 

Описание патента на изобретение RU2539553C1

Изобретение относится к прецизионным сплавам, предназначенным для реализации микрометаллургических процессов, конкретно к сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса.

Сплавы на основе кобальта, в силу своих широких эксплуатационных возможностей, весьма популярны в микрометаллургии для получения порошковых материалов, защитных пленок и покрытий.

Прежде всего, кобальтовые сплавы, особенно в тонких сечениях, имеют преимущества в части высоких физико-механических свойств, в т.ч. по одной из важнейших характеристик - микротвердости.

В частности, известны сплавы для получения порошков, а также перспективные кобальтовые сплавы для получения быстрозакаленных сплавов и покрытий методами распыления расплава и газотермического напыления, в частности, составы которых приведены в Таблице 1. Следует особо отметить, что каждая из перечисленных групп сплавов разрабатывалась с учетом специфических особенностей их технологического использования.

В связи с существенным ужесточением условий эксплуатации элементов конструкций в направлении увеличения механических нагрузок (циклическое, динамическое и эрозионное воздействие), расширением интервала рабочих температур в области положительных и отрицательных значений и необходимостью увеличения коррозионной стойкости при воздействии агрессивных химических реагентов, современные функциональные покрытия должны иметь следующие основные технические характеристики:

- адгезионная прочность покрытия с подложкой не менее 30 МПа;

- микротвердость покрытия не менее 3 ГПа;

- диапазон рабочих температур от -60 до +500°C;

- коррозионная стойкость не ниже 3-4 балла (класс стойкости 2; 3).

Ни один из известных сплавов не позволяет получать функциональные покрытия с такими характеристиками. Экспериментально установлено, что наилучшими характеристиками обладают покрытия, полученные из кобальтовых сплавов, химический состав которых приведен в патентах [1-2], микротвердость этих покрытий достигает 1,7 ГПа. Поэтому для удовлетворения современных требований к функциональным покрытиям необходимо разработать новые составы сплава, адаптированные к условиям получения покрытий методами гетерофазного переноса.

В качестве прототипа выбран прецизионный сплав на основе кобальта для изготовления высокопрочных аморфных материалов в виде лент методом высокоскоростной закалки расплава [3].

Сплав имеет следующий состав (масс. %): железо 1,8-4, никель 6,2-8, бор 8-10, кремний 10-12, церий 0,6-1,2, иттрий 0,2-0,8, хром 2-3,5, цирконий 0,5-1,5, кобальт - остальное.

Недостатками покрытия, полученного с использованием данного сплава, являются: низкая микротвердость покрытий (менее 3 ГПа), недостаточная адгезионная прочность покрытия с подложкой (менее 30 МПа), низкая коррозионная стойкость, не превышающая 3-4 балла, и не достигается требуемого интервала рабочих температур от -60 до +500°C.

Техническим результатом изобретения является повышение микротвердости получаемых покрытий, адгезионной прочности и коррозионной стойкости до требуемых значений, а также увеличение диапазона рабочих температур.

Технический результат достигается за счет того, что сплав на основе кобальта, содержащий хром, кремний, цирконий, иттрий, церий, в соответствии с изобретением, с целью увеличения микротвердости, адгезионной прочности покрытий, коррозионной стойкости и расширения интервала температурной стабильности в области положительных и отрицательных температур, дополнительно содержит рений, лантан, алюминий, борид титана и нитрид бора. Причем хром и кремний вводят в сплав в виде устойчивого интерметаллического соединения Cr3Si, а вводимые в сплав частицы TiB2 и BN имеют размер 30-80 нм. Соотношение компонентов в сплаве следующее (масс.%):

Cr - 17,4-21,1; Si - 2,6-4,9; Re - 3,0-5,0; Zr - 4,0-6,0; Ce - 0,2-0,6; La - 0,1-0,5; Y - 0,3-0,7; Al - 2,0-4,0; TiB2 - 10,0-12,5; BN - 10,0-12,5; Co - основа.

В соответствии с изобретением, оптимальное соотношение между TiB2 и BN в сплаве составляет 1:1.

В качестве базовой композиции выбрана тройная система Co-Cr-Si. Причем наибольший эффект повышения микротвердости, как показали эксперименты, достигается при введении в основу (кобальт) 20-26% устойчивого интерметаллида Cr3Si, что соответствует содержанию в сплаве 17,4-21,1% Cr и 2,6-4,9% Si. В зависимости от вида термомеханической обработки микротвердость чистого кобальта достигает 1,6-2,1 ГПа, для покрытий эта величина, как правило, не превышает 1,8 ГПа. При введении устойчивого интерметаллида Cr3Si наблюдается существенное повышение микротвердости сплава до 3,6 ГПа.

Содержание интерметаллида Cr3Si в количестве 20-26% является оптимальным, т.к. при меньшем, чем 20%, требуемого эффекта повышения микротвердости не наблюдается, а при большем, чем 26%, сплав становится хрупким и при получении покрытия отслаивается от подложки.

Для достижения требуемого высокого уровня функциональных свойств, в тройной сплав системы Co-Cr-Si последовательно вводится рений, цирконий и алюминий.

Введение рения в количестве 3-5% обеспечивает повышения температурной стабильности до 520-550°C по сравнению с 340-360°C для тройного сплава Co-Cr-Si. Этот эффект наблюдается, начиная с 3% Re, а при содержании Re более 5%, так же как и при введении интерметаллида Cr3Si более 26%, наблюдается охрупчивание сплава и покрытий на его основе.

Указанный четырехкомпонентный сплав Co-Cr-Si-Re устойчив в области отрицательных температур только до -40°C. При более низких температурах происходит отслаивание покрытий из этого сплава от подложки. Для повышения хладостойкости до требуемых -60°C (обеспечивающих эксплуатацию элементов конструкций в условиях крайнего Севера и Арктики), в сплав дополнительно вводится цирконий (в количестве 4-6%), эффективно способствующий измельчению зерна и тем самым повышающий хладостойкость. Этот эффект наблюдается, начиная с 4% Zr, и реализуется до 6% Zr, при этом в сплаве снижается эффект, достигнутый за счет введения Re, т.е снижается до 420-430°C температурная стабильность сплава при положительных температурах.

Однако коррозионная стойкость сплава системы Co-Cr-Si-Re-Zr не превышает 3-4 балла (класс стойкости 2; 3). Практика показывает, что в сплав в этом случае необходимо ввести элемент, образующий на поверхности функционального покрытия пассивирующие пленки. Наиболее эффективно это достигается за счет введения алюминия, образующего на поверхности сплава пассивирующие пленки сложного состава Cr2O3-Al2O3. Это достигается при оптимальном количестве алюминия в сплаве от 2,0 до 4,0%.

Прецизионность любого микрометаллургического процесса эффективно обеспечивается за счет комплексного введения эффективных модификаторов в виде малых добавок редкоземельных элементов, имеющих наибольшее сродство к кислороду, водороду и азоту - соответственно церия, лантана и иттрия.

Введение указанных малых добавок очищает сплав от неметаллических включений и обеспечивает протекание устойчивых процессов нанесения покрытий. Это возможно при комплексном введении указанных редкоземельных элементов (РЗЭ) в количестве, не превышающем в сумме 1,8%. Экспериментально установлено, что поэлементное содержание церия должно быть (0,2-0,6)%, лантана (0,1-0,5)%, иттрия (0,3-0,7)%, при большем количестве каждого из указанных РЗЭ и их суммарном содержании более 1,8% образуются фазы, негативно влияющие на стабильность протекания микрометаллургических процессов. Образование неметаллических фаз приводит к неоднородности структуры, прежде всего к появлению многочисленных границ раздела, это приводит к возможности питтинговой коррозии и уменьшению микротвердости на межфазных границах. Экспериментально установлено, что эти явления приводят к возникновению микротрещин, которые, в свою очередь, могут приводить к разрушению покрытия в целом в ходе эксплуатации. Поэтому указанное выше комплексное введение РЗЭ и их суммарное содержание не более 1,8% является оптимальным, так как метастабильные фазы не образуются и, соответственно, удается достичь требуемых характеристик с точки зрения коррозионной стойкости, микротвердости и, как следствие, адгезионной прочности и интервала температурной стабильности.

Однако, как показали испытания, получить указанные выше требуемые свойства из сплава системы Co-Cr-Si-Re-Zr-Ce-La-Y-Al не удается. Имеет место низкая адгезия (адгезионная прочность покрытия с подложкой на отрыв штифтовым методом не превышает 20,6 МПа) и относительно низкое значение микротвердости (не более 3,6 ГПа). Практика и проводимые исследования [4] показывают, что наиболее эффективным для повышения указанных характеристик является введение в металлическую матрицу наноразмерных (фракция 30-80 нм) частиц из тугоплавких химических соединений.

Практика показывает, что наибольшего упрочняющего эффекта при создании функциональных покрытий можно достичь при комплексном введении наноматериалов разных классов, имеющих различную кристаллографическую структуру (например, бориды и нитриды, оксиды и нитриды, нитриды и карбиды и т.д.). Это приводит к существенной фрагментации матричной структуры, возникновению остаточных сжимающих напряжений на межфазных границах и, как следствие, значительному увеличению микротвердости сплава.

Исходя из этого установлено, что оптимальным для сплава системы Co-Cr-Si является введение боридов в сочетании с нитридами. Конкретно оптимальный эффект увеличения микротвердости достигается при введении 20-25% (TiB2+BN) при соотношении между ними 1:1. При этом адгезионная прочность покрытия с подложкой достигает 30-35 МПа, а микротвердость повышается до 4,6 ГПа.

При меньшем количестве вводимых дисперсных частиц и другом фракционном составе эффект увеличения микротвердости незначителен. При большем количестве вводимых дисперсных частиц сплав существенно охрупчивается.

Пример 1

Выплавка сплава осуществляется с помощью высококачественной установки типа УИП16-10-003 в алундовых тиглях N4. Последовательность введения компонентов следующая: (Co+Cr+Si)→Zr→Al→Re→(Ce-La-Y)→(TiB2+BN). Состав сплава (масс.%): Cr - 17,4; Si - 2,6; Re - 3,0; Zr - 4,0; Ce - 0,2; La - 0,1; Y - 0,3; Al - 2,0; TiB2 - 10,0; BN - 10,0; Co - остальное.

После получения слитка производилось его дробление до фракции 5-7 мм с помощью щековой дробилки типа ДЩ-4. Оптимальной фракцией для получения покрытий методом гетерофазного переноса с помощью установки микроплазменного напыления типа УГНП-3/3350 является фракция исходного материала 50-80 мкм. Дробление до указанной фракции производилось на дезентиграторной установке типа Дези-1А при скоростях вращения роторов 7200 об/мин. Из полученного порошка с помощью метода микроплазменного напыления на подложку пластины из стали Х18Н10Т толщиной 5 мм было нанесено функциональное покрытие толщиной 150±20 мкм.

Микротвердость покрытия, измеренная на установке Nanoscan, составила 4,2 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C - 3,6 и 4,0 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 35 МПа.

Пример 2

Выплавка сплава производилась так же как в примере 1. Состав сплава (масс.%): Cr - 21,1; Si - 4,9; Re - 5,0; Zr - 6,0; Ce - 0,6; La - 0,5; Y - 0,3; Al - 2,0; TiB2 - 12,5; BN - 12,5; Co - остальное.

После получения слитка производилось дробление слитка до фракции 40-60 мкм на дезинтеграторе типа Дези-15 при скоростях вращения роторов 12000 об/мин.

Из полученного порошка с помощью метода сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3 на подложку пластины из стали Х15Ю5 шириной 100 мм и толщиной 3 мм было нанесено функциональное покрытие толщиной 100±10 мкм.

Микротвердость покрытия, измеренная, как в примере 1, составляет 4,6 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C 3,0 и 4,2 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 32 МПа.

Источники информации

1. RU 2352663, МПК C22C 19/07, опубликовано 20.04.2009.

2. RU 2333990, МПК С22С 19/07, С22С 30/00, опубликовано 20.09.2008.

3. RU 2273680, МПК С22С 19/07, опубликовано 10.04.2006 - прототип.

4. Горынин И.В., Бурханов Г.С., Фармаковский Б.В. Перспективы разработок конструкционных материалов на основе тугоплавких металлов и соединений. // Вопросы материаловедения. - 2012. - СПб. №2. - 5 с.

Похожие патенты RU2539553C1

название год авторы номер документа
Способ газотермического напыления износостойких покрытий на основе системы Ti/TiВ 2021
  • Гошкодеря Михаил Евгеньевич
  • Бобкова Татьяна Игоревна
  • Кузнецов Павел Алексеевич
  • Фармаковский Борис Владимирович
RU2791259C1
ИЗНОСО-КОРРОЗИОННОСТОЙКИЙ МЕДНО-НИКЕЛЕВЫЙ СПЛАВ 2013
  • Шолкина Марина Николаевна
  • Федорченко Валерия Борисовна
  • Крылов Павел Сергеевич
  • Егорова Екатерина Эдуардовна
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Шуба Иван Михайлович
  • Юрков Максим Анатольевич
RU2553799C2
НАНОКОМПОЗИТ НА ОСНОВЕ НИКЕЛЬ-ХРОМ-МОЛИБДЕН 2013
  • Деев Артем Андреевич
  • Фармаковская Алина Яновна
  • Бобкова Татьяна Игоревна
  • Юрков Максим Анатольевич
  • Мазеева Алина Константиновна
  • Колдаев Антон Викторович
RU2525878C1
Резистивный сплав на основе марганца 2023
  • Каширина Анастасия Анверовна
  • Бобкова Татьяна Игоревна
  • Васильев Алексей Филиппович
  • Старицын Михаил Владимирович
  • Фармаковский Борис Владимирович
  • Гошкодеря Михаил Евгеньевич
RU2807816C1
СПЛАВ НА ОСНОВЕ СИСТЕМЫ НИКЕЛЬ-ХРОМ 2014
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Юрков Максим Анатольевич
  • Фармаковская Алина Яновна
  • Низкая Анастасия Вячеславовна
  • Бобкова Татьяна Игоревна
  • Ешмеметьева Екатерина Николаевна
  • Масайло Дмитрий Валерьевич
RU2561627C1
Сплав на основе алюминия для нанесения износостойких покрытий 2022
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Бобкова Татьяна Игоревна
  • Гошкодеря Михаил Евгениевич
  • Геращенков Дмитрий Анатольевич
  • Самоделкин Евгений Александрович
  • Быстров Руслан Юрьевич
RU2796583C1
Износо-коррозионностойкий сплав на медно-никелевой основе 2023
  • Быстров Руслан Юрьевич
  • Старицын Михаил Владимирович
  • Петров Сергей Николаевич
  • Кубанцев Виктор Иванович
  • Самоделкин Евгений Александрович
  • Фармаковский Борис Владимирович
  • Шакиров Иван Викторович
RU2814118C1
Способ получения функционально-градиентного покрытия на основе системы Ni-Cr-Mo-TiB 2021
  • Геращенкова Елена Юрьевна
  • Фармаковский Борис Владимирович
  • Петров Сергей Николаевич
  • Геращенков Дмитрий Анатольевич
  • Бобкова Татьяна Игоревна
  • Старицын Михаил Владимирович
RU2791261C1
ШИХТА ДЛЯ АНТИФРИКЦИОННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ И СПЕЧЕННЫЙ АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ, ПОЛУЧЕННЫЙ С ЕЕ ИСПОЛЬЗОВАНИЕМ 2007
  • Савицкий Арнольд Петрович
  • Прибытков Геннадий Андреевич
  • Коржова Виктория Викторовна
  • Вагнер Марина Ивановна
RU2359051C2
СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННОСТОЙКИХ ПОКРЫТИЙ МИКРОПЛАЗМЕННЫМ ИЛИ ХОЛОДНЫМ СВЕРХЗВУКОВЫМ НАПЫЛЕНИЕМ 2013
  • Бобкова Татьяна Игоревна
  • Бурьян Марина Андреевна
  • Геращенкова Елена Юрьевна
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Деев Артем Андреевич
RU2527543C1

Реферат патента 2015 года КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9; рений - 3,0-5,0; цирконий - 4,0-6,0; церий - 0,2-0,6; лантан - 0,1-0,5; иттрий - 0,3-0,7; алюминий - 2,0-4,0; борид титана - 10,0-12,5; нитрид бора - 10,0-12,5; Co - остальное. Изобретение позволяет увеличить микротвердость, адгезионную прочность и коррозионную стойкость покрытий. 1 з.п. ф-лы, 1 табл., 2 пр.

Формула изобретения RU 2 539 553 C1

1. Сплав на основе кобальта, содержащий хром, кремний, цирконий, иттрий, церий, отличающийся тем, что он дополнительно содержит рений, лантан, алюминий, борид титана и нитрид бора, при следующем соотношении компонентов, мас.%:
Cr - 17,4-21,1;
Si - 2,6-4,9;
Re - 3,0-5,0;
Zr - 4,0-6,0;
Ce - 0,2-0,6;
La - 0,1-0,5;
Y - 0,3-0,7;
Al - 2,0-4,0;
TiB2 - 10,0-12,5;
BN - 10,0-12,5;
Co - основа,
причем частицы TiB2 и BN имеют размер 30-80 нм.

2. Сплав по п.1, отличающийся тем, что соотношение между TiB2 и BN составляет 1:1.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539553C1

АМОРФНЫЙ МАГНИТОМЯГКИЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА 2004
  • Фармаковский Борис Владимирович
  • Орлова Янина Валерьевна
  • Песков Тимофей Владимирович
  • Кузнецов Павел Алексеевич
  • Аскинази Анатолий Юрьевич
RU2273680C1
RU 2001143 C1, 15.10.1993
СПЛАВ НА ОСНОВЕ КОБАЛЬТА 1993
  • Балдаев Л.Х.
RU2051196C1
US 20130052482 A1, 28.02.2013
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1

RU 2 539 553 C1

Авторы

Васильев Алексей Филиппович

Фармаковский Борис Владимирович

Кузнецов Павел Алексеевич

Юрков Максим Анатольевич

Фармаковская Алина Яновна

Низкая Анастасия Вячеславовна

Ковалева Анастасия Андреевна

Деев Артем Андреевич

Черныш Алексей Алексадрович

Елисеев Александр Андреевич

Бобкова Татьяна Игоревна

Даты

2015-01-20Публикация

2013-11-12Подача