СПОСОБ ИСПЫТАНИЙ ПУЛЬСИРУЮЩЕГО ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ И АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2010 года по МПК G01M9/02 

Описание патента на изобретение RU2381472C1

Изобретение относится к транспортному машиностроению, в частности к авиадвигателестроению, и может быть использовано для наземных испытаний и исследования характеристик пульсирующего детонационного двигателя.

Известен способ отладки газотурбинного двигателя с форсажной камерой (патент RU № 1245064, G 01М 15/00, 20.08.96), основанный на регулировании приемистости двигателя по результатам сравнительного анализа данных изменений во времени давления в топливном коллекторе двигателя.

Недостатком способа является низкая степень информативности испытаний.

Известен высотный стенд для испытаний ракетных двигателей (патент RU № 2075742, G 01М 15/00, 20.03.97), содержащий диффузор, барокамеру, исполнительные механизмы и измерительную аппаратуру.

Недостатком этого стенда является отсутствие устройства для создания потока и моделирования условий полета.

Известна аэродинамическая установка (Мартынов А.К. Экспериментальная аэродинамика. М.: 1950. С.155), содержащая открытую рабочую часть с воздушным потоком, в котором на весовых стойках размещают летательный аппарат с двигателем, средства измерения и управления.

Недостатками известного технического решения являются ограничения по ряду важных параметров моделирования условий полета летательного аппарата с двигателем.

Наиболее близким из известных технических решений предлагаемому способу испытаний пульсирующего детонационного двигателя является способ определения на модели транспортного средства его аэродинамических характеристик (патент RU № 2035031, G 01М 17/00, 10.05.1995), основанный на воздействии набегающего потока воздуха на установленную в рабочую часть аэродинамической трубы модель транспортного средства, соединенную с тягоизмерительным устройством, и определении аэродинамических и тяговых характеристик по результатам измерений.

Недостатком известного технического решения является невозможность воспроизвести условия работы пульсирующего детонационного двигателя на режиме полета с высокой скоростью.

Наиболее близким из известных технических решений предлагаемому устройству является аэродинамическая труба периодического действия (Г.С.Бюшгенс, Е.Л.Бедржицкий, В.Г.Дмитриев. Центр авиационной науки. М.: 2004. С.279), содержащая закрытую рабочую часть аэродинамической трубы, сменную форкамеру, электроподогреватель, сверхзвуковое сопло, сверхзвуковой диффузор, эжектор, выхлопной диффузор и средства управления и измерений.

Недостатком известного технического решения является отсутствие средств топливопитания пульсирующего детонационного двигателя, связанного с тягоизмерительным устройством.

Задачей данного изобретения является повышение надежности и информативности испытаний пульсирующего детонационного двигателя в условиях полета со сверхзвуковой скоростью.

Технический результат, получаемый при осуществлении изобретения, заключается в непосредственном измерении тяги пульсирующего детонационного двигателя в условиях полета со скоростью, соответствующей числам М в диапазоне от 1,75 до 7.

Согласно заявляемому изобретению предлагаемый способ испытаний пульсирующего детонационного двигателя заключается в воздействии набегающего потока воздуха на установленный в закрытой рабочей части аэродинамической трубы пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива, и соединенный с тягоизмерительным устройством. При этом на входе пульсирующего детонационного двигателя создают условия сверхзвукового полета, направляют топливную смесь в детонационную камеру сгорания двумя потоками: через пористую торцевую стенку детонационной камеры сгорания вводят топливную смесь с коэффициентом избытка окислителя менее 0,1 и через кольцевое сопло, установленное между воздухозаборником и детонационной камерой сгорания, вводят топливную смесь с коэффициентом избытка окислителя более 0,85, инициируют процесс пульсирующей газовой детонации в частотном диапазоне от 100 до 27000 герц, измеряют параметры пульсирующего детонационного двигателя и режимы его испытаний и определяют тягу пульсирующего детонационного двигателя на режимах полета со скоростью, соответствующей числам М в диапазоне от 1,75 до 7.

Таким образом, технический результат достигается тем, что в способе испытаний пульсирующего детонационного двигателя, основанном на воздействии набегающего потока воздуха на пульсирующий детонационный двигатель, соединенный с тягоизмерительным устройством, и определении аэродинамических и тяговых характеристик по результатам измерений, пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива устанавливают в закрытую рабочую часть аэродинамической трубы на закрытой обтекателем весовой державке с шестикомпонентными охлаждаемыми тензовесами, создают на входе пульсирующего детонационного двигателя условия сверхзвукового полета, направляют топливную смесь в детонационную камеру сгорания двумя потоками через пористую торцевую стенку детонационной камеры сгорания и кольцевое сопло, установленное между воздухозаборником и детонационной камерой сгорания, инициируют процесс пульсирующей газовой детонации в частотном диапазоне от 100 до 27000 герц, измеряют параметры пульсирующего детонационного двигателя и условий его испытаний и определяют тягу пульсирующего детонационного двигателя на режимах полета со скоростью, соответствующей числам М в диапазоне от 1,75 до 7. При этом топливную смесь с коэффициентом избытка окислителя менее 0,1 вводят в детонационную камеру сгорания через пористую торцевую стенку и топливную смесь с коэффициентом избытка окислителя более 0,85 вводят в детонационную камеру сгорания через кольцевое сопло.

Решение поставленной задачи достигается также тем, что аэродинамическая установка для испытаний пульсирующего детонационного двигателя и реализации предлагаемого способа, включающая закрытую рабочую часть аэродинамической трубы, сменную форкамеру, электроподогреватель, сверхзвуковое сопло, сверхзвуковой диффузор, эжектор, выхлопной диффузор и средства управления и измерений, содержит пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива, соединенный с тягоизмерительным устройством, выполненным в виде закрытой обтекателем весовой державки с шестикомпонентными охлаждаемыми тензовесами, на которой он установлен в закрытую рабочую часть аэродинамической трубы, причем для подачи топливной смеси между воздухозаборником и детонационной камерой установлено кольцевое сопло. При этом воздухозаборник пульсирующего детонационного двигателя выполнен кольцевым с центральным телом, внутри которого размещен топливный картридж для генерации водорода, а детонационная камера сгорания сформирована пористой торцевой стенкой и внутренней стенкой соплового аппарата и соединена кольцевым соплом с воздухозаборником.

Схема аэродинамической установки для испытания пульсирующего детонационного двигателя по предлагаемому способу приведена на фигурах 1 и 2.

Согласно изобретению способ испытаний пульсирующего детонационного двигателя реализуется с помощью аэродинамической установки, показанной на фигурах 1 и 2 и содержащей закрытую рабочую часть 1 аэродинамической трубы, сменную форкамеру 2, электроподогреватель 3, сверхзвуковое сопло 4, сверхзвуковой диффузор 5, эжектор 6, выхлопной диффузор 7, средства управления 8 и измерений 9, пульсирующий детонационный двигатель 10 с необходимым для испытаний запасом топлива (картридж 11), соединенный с тягоизмерительным устройством 12, выполненным в виде закрытой обтекателем весовой державки с шестикомпонентными охлаждаемыми тензовесами 13. При этом воздухозаборник 14 пульсирующего детонационного двигателя 10 выполнен кольцевым с центральным телом 15, внутри которого размещен топливный картридж 11 для генерации водорода, а детонационная камера сгорания 16 сформирована пористой торцевой стенкой 17 и внутренней стенкой соплового аппарата 18 и соединена кольцевым соплом 19 с воздухозаборником 14.

Особенностью предлагаемого способа испытаний пульсирующего детонационного двигателя является то, что впервые появилась возможность выполнить комплексные исследования и прямые измерения тяги пульсирующего детонационного двигателя при воспроизведении и/или моделировании условий полета со скоростью, соответствующей числам Маха в диапазоне от 1,75 до 7, в режиме пульсирующей газовой детонации в диапазоне частот от 100 до 27000 герц. При этом топливную смесь в детонационную камеру сгорания 16 вводят двумя потоками: через пористую торцевую стенку 17 вводят топливную смесь с коэффициентом избытка окислителя менее 0,1 и через кольцевое сопло 19 вводят топливную смесь с коэффициентом избытка окислителя более 0,85. Наличие топливного картриджа 11 и отсутствие топливоподводов обеспечивает высокую точность измерения действующих сил и моментов весовой державкой 12 с охлаждаемыми шестикомпонентными тензовесами 13 и определения аэродинамических характеристик и тяги пульсирующего детонационного двигателя.

Заявленное изобретение основано на апробированной методологии испытаний авиационной техники в промышленных аэродинамических трубах и результатах новых разработок, выполненных в рамках гранта РФФИ 07-08-12056 «Исследования процессов газовой детонации и разработка прототипа гиперзвукового беспилотного летательного аппарата с пульсирующим детонационным двигателем».

Похожие патенты RU2381472C1

название год авторы номер документа
ТРАНСФОРМИРУЕМЫЙ РАКЕТНО-ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ ДЕТОНАЦИОННОГО ГОРЕНИЯ (ВАРИАНТЫ) 2019
  • Криштоп Анатолий Михайлович
RU2704503C1
ВОЗДУШНО-РЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ 2019
  • Фролов Сергей Михайлович
  • Аксёнов Виктор Серафимович
  • Шамшин Игорь Олегович
  • Набатников Сергей Александрович
  • Авдеев Константин Алексеевич
  • Шулакова Надежда Сергеевна
RU2706870C1
ГИПЕРЗВУКОВОЙ ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ 2007
  • Носачев Леонид Васильевич
RU2347097C1
МАЛОРАЗМЕРНЫЙ БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ С ПУЛЬСИРУЮЩИМ ДЕТОНАЦИОННЫМ ДВИГАТЕЛЕМ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ 2008
  • Носачев Леонид Васильевич
  • Прохоров Роман Владимирович
RU2373114C1
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ 2010
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
  • Амброжевич Александр Владимирович
  • Ларьков Сергей Николаевич
RU2443893C1
Универсальный реактивный двигатель (УРД) 2019
  • Решетников Михаил Иванович
RU2754976C2
ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ 2021
  • Фролов Сергей Михайлович
  • Иванов Владислав Сергеевич
  • Фролов Фёдор Сергеевич
  • Авдеев Константин Алексеевич
  • Шиплюк Александр Николаевич
  • Звегинцев Валерий Иванович
  • Наливайченко Денис Геннадьевич
  • Внучков Дмитрий Александрович
RU2796043C2
ДЕТОНАЦИОННЫЙ ПУЛЬСИРУЮЩИЙ РАКЕТНО-ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ (ДПуРВРД) И СПОСОБ ФУНКЦИОНИРОВАНИЯ ДПуРВРД (ВАРИАНТЫ) 2021
  • Криштоп Анатолий Михайлович
RU2781720C1
ШИРОКОДИАПАЗОННЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ ДЕТОНАЦИОННОГО ГОРЕНИЯ (ВАРИАНТЫ) 2019
  • Криштоп Анатолий Михайлович
RU2704431C1
СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В ПРЯМОТОЧНОМ ВОЗДУШНО-РЕАКТИВНОМ ДВИГАТЕЛЕ С НЕПРЕРЫВНО-ДЕТОНАЦИОННОЙ КАМЕРОЙ СГОРАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Фролов Сергей Михайлович
  • Иванов Владислав Сергеевич
  • Набатников Сергей Александрович
  • Зангиев Алан Эльбрусович
  • Авдеев Константин Алексеевич
  • Звегинцев Валерий Иванович
  • Шулакова Надежда Сергеевна
RU2714582C1

Иллюстрации к изобретению RU 2 381 472 C1

Реферат патента 2010 года СПОСОБ ИСПЫТАНИЙ ПУЛЬСИРУЮЩЕГО ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ И АЭРОДИНАМИЧЕСКАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретения относятся к транспортному машиностроению, в частности к авиадвигателестроению, и могут быть использованы для наземных испытаний и исследования характеристик пульсирующего детонационного двигателя. Способ заключается в создании в аэродинамической трубе условий на входе в пульсирующий детонационный двигатель, соответствующих взаимодействию его с высокоскоростным потоком воздуха, организации топливопитания детонационной камеры сгорания и последующем измерении возникающих сил и моментов при работе двигателя шестикомпонентными тензовесами для определения тяги. Устройство включает закрытую рабочую часть аэродинамической трубы, сменную форкамеру, электроподогреватель, сверхзвуковое сопло, сверхзвуковой диффузор, эжектор, выхлопной диффузор и средства управления и измерений. При этом в закрытую рабочую часть аэродинамической трубы установлен пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива, соединенный с тягоизмерительным устройством, выполненным в виде закрытой обтекателем весовой державки с шестикомпонентными охлаждаемыми тензовесами. Для подачи топливной смеси между воздухозаборником и детонационной камерой сгорания установлено кольцевое сопло. Технический результат заключается в возможности прямого измерения аэродинамических характеристик и тяги пульсирующего детонационного двигателя при воспроизведении и/или моделировании условий полета. 2 н. и 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 381 472 C1

1. Способ испытаний пульсирующего детонационного двигателя, включающий воздействие набегающего потока воздуха на установленный в рабочую часть аэродинамической трубы пульсирующий детонационный двигатель и определение аэродинамических и тяговых характеристик по результатам измерений, отличающийся тем, что пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива устанавливают в закрытую рабочую часть аэродинамической трубы на закрытой обтекателем весовой державке с шестикомпонентными охлаждаемыми тензовесами, создают на входе пульсирующего детонационного двигателя условия сверхзвукового полета, направляют топливную смесь в детонационную камеру сгорания двумя потоками через пористую торцевую стенку детонационной камеры сгорания и кольцевое сопло, инициируют процесс пульсирующей газовой детонации в частотном диапазоне от 100 до 27000 Гц, измеряют параметры пульсирующего детонационного двигателя и условий его испытаний и определяют тягу пульсирующего детонационного двигателя на режимах полета со скоростью, соответствующей числам М в диапазоне от 1,75 до 7.

2. Способ по п.1, отличающийся тем, что топливную смесь с коэффициентом избытка окислителя менее 0,1 вводят в детонационную камеру сгорания через пористую торцевую стенку и топливную смесь с коэффициентом избытка окислителя более 0,85 вводят в детонационную камеру сгорания через кольцевое сопло.

3. Аэродинамическая установка для испытаний пульсирующего детонационного двигателя, включающая закрытую рабочую часть аэродинамической трубы, сменную форкамеру, электроподогреватель, сверхзвуковое сопло, сверхзвуковой диффузор, эжектор, выхлопной диффузор и средства управления и измерений, отличающаяся тем, что в закрытую рабочую часть аэродинамической трубы установлен пульсирующий детонационный двигатель с необходимым для испытаний запасом топлива, соединенный с тягоизмерительным устройством, выполненным в виде закрытой обтекателем весовой державки с шестикомпонентными охлаждаемыми тензовесами, причем для подачи топливной смеси между воздухозаборником и детонационной камерой сгорания установлено кольцевое сопло.

4. Аэродинамическая установка по п.3, отличающаяся тем, что воздухозаборник пульсирующего детонационного двигателя выполнен кольцевым с центральным телом, внутри которого размещен топливный картридж для генерации водорода, а детонационная камера сгорания сформирована пористой торцевой стенкой и внутренней стенкой соплового аппарата и соединена кольцевым соплом с воздухозаборником.

Документы, цитированные в отчете о поиске Патент 2010 года RU2381472C1

МОДЕЛЬ ТРАНСПОРТНОГО СРЕДСТВА ДЛЯ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ТРАНСПОРТНОГО СРЕДСТВА И СПОСОБ ОПРЕДЕЛЕНИЯ НА МОДЕЛИ ТРАНСПОРТНОГО СРЕДСТВА АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ТРАНСПОРТНОГО СРЕДСТВА 1992
  • Болотин В.А.
  • Дядькин А.А.
  • Серафимов В.П.
  • Сунгуров Ю.В.
RU2035031C1
Бюшгенс Г.С., Бедржицкий Е.Л., Дмитриев В.Г
Центр авиационной науки
- М., 2004, с.279
СПОСОБ ОТЛАДКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ С ФОРСАЖНОЙ КАМЕРОЙ 1984
  • Кириллов В.С.
  • Михайлов А.А.
  • Савельев Е.С.
SU1245064A1
ВЫСОТНЫЙ СТЕНД ДЛЯ ИСПЫТАНИЙ РАКЕТНЫХ ДВИГАТЕЛЕЙ 1993
  • Багдасарьян Александр Александрович
  • Багдасарьян Михаил Александрович
  • Шишков Альберт Алексеевич
  • Вакуличев Владимир Тихонович
  • Беляков Владимир Сергеевич
RU2075742C1
Мартынов А.К
Экспериментальная аэродинамика
- М., 1950, с.155.

RU 2 381 472 C1

Авторы

Носачев Леонид Васильевич

Пляшечник Владимир Ильич

Лацоев Казбек Федорович

Павлов Юрий Алексеевич

Швалев Юрий Григорьевич

Даты

2010-02-10Публикация

2008-08-01Подача