ЛИТАЯ ЗАГОТОВКА ИЗ ЛАТУНИ ДЛЯ ИЗГОТОВЛЕНИЯ КОЛЕЦ СИНХРОНИЗАТОРОВ Российский патент 2010 года по МПК C22C9/04 

Описание патента на изобретение RU2382099C2

Предлагаемый объект относится к области металлургии, в частности к производству трубных заготовок из медных сплавов, предназначенных для изготовления колец синхронизаторов коробок передач автомобилей.

Из уровня техники известны составы латуни для изготовления колец синхронизаторов коробок передач автомобилей [1-7]. Как правило, применяют латуни сложного химического состава, в котором функции элементов оказываются различными. Легирование цинком и алюминием позволяет получить прочный медный сплав, а также добиться возможности регулирования его свойств за счет различного распределения фаз. Легирование свинцом улучшает триботехнические свойства изделия.

Введение некоторых элементов позволяет добиться выделения интерметаллидных составляющих, которые в качестве дисперсных твердых частиц резко улучшают характеристики материала. К таким составляющим относят никель, железо, алюминий, кремний, ниобий, марганец и некоторые другие элементы.

Фирма CHUETSU METAL WORKS получила патент № US 5288683 [1] на состав сплава на основе меди, содержащего 28-32% цинка, 3,5-5,5% алюминия, 0,5-2,0% железа, 1-3% никеля, 0,1-1,0% ниобия, 0,4-1,5% титана. В состав сплава входит две составляющие, образующие интерметаллидные соединения: Ti-Ni-Fe-Al и Nb-Fe-Al. Несмотря на наличие титана этот сплав не может являться прототипом, поскольку, в целом, его состав отличен от заявляемого, а упрочняющее действие здесь основано на интерметаллидах иного класса. Недостатком сплава является применение дорогостоящих элементов: никеля или ниобия, что удорожает сплав.

В соответствии с патентом фирмы MITSUBISHI METAL CORP [2] кольцо синхронизатора изготавливают из материала на основе меди, при этом рабочая поверхность кольца может содержать слой оксида алюминия толщиной 0,1-10 мкм. Изготовление самого изделия - синхронизатора не предусмотрено данной заявкой, поэтому этот патент не может быть признан в качестве прототипа.

Фирма MITSUBISHI METAL CORP в патенте № US 5788924 [3] описала заготовку сплав на основе меди, содержащий 20-40% цинка, 2-11% алюминия, и 1-5% металла из группы железа, никеля, кобальта, 0,1-4% титана, 0,01-0,5% магния. Следующий патент № JP 8120427 [4] этой фирмы предполагал наличие в сплаве матрицы на основе α- и β'- фаз в регламентированных пределах. По этому патенту слиток из латуни сложного состава, содержащей алюминий, никель, титан, магний, должен состоять из смеси α- и β-фаз, но содержание титана в фазах не оговаривалось. Сплав не содержит основных элементов, необходимых для получения упрочняющих интерметаллидов в заявляемом составе - марганца и кремния, поэтому также не может являться прототипом.

В патенте Японии JP 2001355030 [5] фирмы MITSUBISHI METAL CORP заявлен сплав для синхронизаторов автомобилей, содержащий 27-33% цинка, 3-4,5% алюминия, и 1,5-3% никеля, 1-2% титана, 0,2-0,7% марганца, 0,005-0,5% железа, 0,01-0,1% кремния. Сплав должен иметь одинаковые по величине зерна α- или β-фаз с равномерно распределенными интерметаллическими частицами. Этот состав предполагает наличие никеля, которого нет в заявляемом сплаве, кроме того, титан здесь содержится в слишком большом количестве, что допустимо, если никель свяжет титан в интерметаллид, но в противном случае свойства материала окажутся неудовлетворительными. Марганца, кремния и железа в сплаве содержится слишком мало для создания достаточного количества упрочняющей фазы.

Большой объем исследований, направленных на улучшение характеристик колец синхронизаторов, представлен фирмой MITSUBISHI METAL CORP в патенте № US 4874439 [6]. Выработаны составы, требования к заготовкам и технологии их производства. В том числе предложена литая заготовка из латуни(прототип), содержащей (мас.%): 17-40% цинка, 2-11% алюминия, 0,1-3,5 Ti или Zr или V, 0-3 Fe или Ni или Со, 0-0,5 Si; 0-4 Mn; 0-1,5 Pb.

Таким образом, в прототипе описана латунь для изготовления колец синхронизаторов, содержащая добавки марганца, алюминия, железа, кремния, свинца и титана. Известно, что высокоцинковые латуни кристаллизуются в виде α-фазы, (α+β') - смеси фаз, а при получении сплава кремний, марганец и железо образуют интерметаллиды: силициды состава (Fe,Mn)5Si3. Поэтому литая заготовка из латуни по прототипу содержит добавки марганца, алюминия, железа, кремния, свинца и титана при наличии α-фазы, (α+β') - смеси фаз и силицидов марганца и железа (Fe,Mn)5Si3. В тексте описания к патенту утверждается, что содержание титана менее 0,1% является незначимым, что, возможно, справедливо в отношении свойств готовых изделий, но не справедливо в отношении технологических свойств литой заготовки.

Недостатком объекта по прототипу является слишком большое содержание титана в сплаве и неконтролируемое содержание титана в фазовых составляющих, что приводит к пониженной технологической прочности сплава. В реальном производстве прочностные свойства определяют возможность осуществления полунепрерывного литья крупногабаритных слитков и их транспортирования без разрушения. Эта задача не была решена в патенте по прототипу, поскольку для получения заготовок использовалось наполнительное литье, имеющее свои особенности, в частности долгое нахождение кристаллизующегося металла в нагретом состоянии, относительно малая масса слитка, но большая масса изложницы и т.д.

Как показали исследования авторов, наибольшее упрочняющее действие при условии сохранения достаточной технологической пластичности титан оказывает при его содержании 0,01-0,07 мас.% и нахождении его не в α-фазе, а в (α+β') - смеси фаз, а также в силициде марганца и железа. Для достижения наибольшей технологической прочности содержание титана должно составлять (мас.%) 0,04-0,18 в (α+β') - смеси фаз и 0,06-0,26 в силициде марганца и железа. Здесь и далее под технологической прочностью будет пониматься временное сопротивление, измеренное не у готового изделия (у него временное сопротивление окажется заведомо выше вследствие применения операций термомеханической обработки), а после определенной технологической операции, в данном случае, после литья. Эта характеристика важна не для потребителя, а для технолога, поскольку она показывает, насколько прочен материал в данном месте технологического процесса. В объекте по прототипу эта характеристика не определялась.

Особенностями структуры сплавов синхронизаторов на основе латуни является наличие α и β фаз, а также присутствие интерметаллидных соединений, упрочняющих такую матрицу. Структурные составляющие матрицы представляют собой α - твердый раствор цинка в меди, имеющий ГЦК (гранецентрированную кубическую)-решетку, β - твердый раствор меди в цинке, имеющий ОЦК (объемно-центрированную кубическую)-решетку, силицидов железа, марганца или других компонентов, имеющих сложную гексагональную кристаллическую решетку. В сплаве фаза β присутствует в виде двухфазной (α+β)-структуры в горячем состоянии (выше температуры 460°С) и в виде двухфазной (α+β')-структуры в холодном состоянии (ниже температуры 460°С).

Таким образом, прочность сплава в холодном состоянии определяется, в основном, фазой β, которая является заведомо более прочной, чем α-фаза. Еще более прочными образованиями являются интерметаллиды в виде силицида марганца и железа. Именно поэтому в данном техническом решении предлагается дополнительно упрочнить эти фазовые составляющие титаном.

На чертеже приведена фотография шлифа литой заготовки из латуни заявляемого состава с указанием места расположения отдельных фаз.

Пример 1. Выплавляли латунь следующего химического состава (мас.%): медь 70,45; алюминий 5,44; железо 1,79; марганец 6,80; свинец 0,86; кремний 2,09; цинк - остальное, при содержании примесей не более 0,3. В этом опыте (№ 1 в таблице) титан в плавку не добавляли с целью определить его роль при последующем легировании. Методом полунепрерывного литья в водоохлаждаемый кристаллизатор получали литую заготовку диаметром 212 мм и разрезали на мерные длины. На вырезанных образцах определили временное сопротивление σв=380 МПа. Из заводской практики известно, что слитки из сплава σв менее 420 МПа склонны к трещинообразованию в транспортных операциях и при нагреве перед прессованием, поэтому этот вариант сплава не является оптимальным.

Зависимость временного сопротивления латуни в литом состоянии от содержания титана в различных фазовых составляющих № опыта Содержание титана, % Содержание титана в (α+β') - смеси фаз Содержание титана в силициде σв, МПа 1 0 0 0 380 2 0,01 0,04 0,06 430 3 0,03 0,07 0,12 425 4 0,04 0,11 0,18 425 5 0,07 0,18 0,26 420 6 0,14 0,36 0,50 329

Пример 2. Выплавляли латунь того же химического состава, но в отличие от первого примера добавляли в нее титан из расчета его содержания в сплаве (мас.%) 0,01; 0,03; 0,04; 0,07; 0,14, а также 0,04; 0,07; 0,11; 0,18; 0,36 мас.% в (α+β') - смеси фаз и, соответственно 0,06; 0,12; 0,18; 0,26; 0,50 мас.% в силициде. Регулирование соотношения фаз осуществляли соответствующим набором шихтовых материалов и назначением скоростей охлаждения металла на различных этапах процесса литья. Содержание элементов в фазовых составляющих определяли с использованием микрорентгеноспектрального анализа.

Для варианта достижения содержания титана 0,04 мас.% в сплаве; 0,11 мас.% в (α+β') - смеси фаз и 0,18 мас.% в силициде марганца и железа на чертеже приведена фотография структуры литой заготовки, где обозначено размещение различных фазовых составляющих: 1 - α-фаза; 2 - (α+β') -смесь фаз и 3 - силицид марганца и железа. В этом и других опытах в указанных областях определяли химический состав фазовых составляющих материала.

Результаты, приведенные в таблице (опыты 2-6), показывают, что временное сопротивление увеличивается выше 420 МПа при содержании титана 0,01-0,07 мас.% в сплаве; 0,04-0,18 мас.% в (α+β') - смеси фаз и при 0,06-0,26 мас.% в силициде марганца и железа.

В части содержания титана в латуни, равном 0,14 мас.%, опыт №6 соответствует условиям прототипа, в котором в состав сплава входит 0,1-3,5 мас.% Ti. Обнаружено, что в этом случае временное сопротивление уменьшается ниже допустимого предела, поэтому такой вариант сплава не является рациональным. Кроме того, в опытах выявлено, что если в заявляемом интервале компонентов относительное удлинение δ находится на уровне 2%, то в опыте №6 получен материал, характеризующийся δ=1%, т.е. заявляемый материал имеет пластичность в два раза выше материала по прототипу.

Полученные литые заготовки из латуни заявленного состава подвергнуты прошивке и прессованию при температуре 740°С на горизонтальном прессе с получением трубных заготовок с толщиной стенки 6,9-9,25 мм. После регламентированного режима охлаждения они направлены потребителю, от которого получено положительное заключение.

Технический результат от применения заявляемого объекта заключается в повышении технологической прочности и пластичности литых заготовок.

Литература

1. Патент US 5288683. Wear-resistant copper alloys and synchronizer rings for automobiles, comprising the same. Appl: CHUETSU METAL WORKS (JP). Inv.: NAKASHIMA KUNIO. IPC C22C 9/04. Publ. 1994-02-22.

2. Патент US 4995924. Synchronizer ring in speed variator made of copper alloy. Appl: MITSUBISHI METAL CORP (JP). Inv.: AKUTSU HIDETOSHI. IPC C22C 9/04. Publ. 1991-02-06.

3. Патент US 5788924. Wear resistant copper alloy and synchronizer ring made thereof. Appl.: MITSUBISHI METAL CORP (JP). Inv.: МАЕ YOSHIHARU, KOBAYASHI MASAO. IPC C22C 9/04. Publ. 1998-08-04.

4. Патент JP 8120427. Production of synchronizer ring made of brass type copper alloy for automobile gearbox, excellent in seizure resistance. Appl.: MITSUBISHI METAL CORP (JP). TOYOTA MOTOR CORP (JP). Inv.: KOBAYASHI MASAO, МАЕ YOSHIHARU. IPC C22F 1/08. Publ. 1996-05-14.

5. Патент JP 2001355030. Copper alloy-made hot-die forged synchronizer rings having excellent fatigue strength in chamber part. Appl.: MITSUBISHI METAL CORP (JP). Inv.: KOBAYASHI MASAO. IPC C22C 9/04. Publ. 2001-12-25.

6. Патент US 4874439. Synchronizer ring in speed variator made of wear-resistent copper alloy having high strength and toughness. Appl.: MITSUBISHI METAL CORP (JP). Inv.: AKUTSU HIDETOSHI. IPC C22C 9/00. Publ. 1989-10-17.

7. Патент ЕР 1690952. Synchronizer ring made of copper alloy exhibiting excellent resistance to plastic flow under high exothermic circumstance. Appl.: MITSUBISHI MATERIALS CORP (JP). Inv.: KOBAYASHI MASAO. IPC C22C 9/04; F16D 23/02; F16D 23/06. Publ. 2006-08-16.

Похожие патенты RU2382099C2

название год авторы номер документа
ЛИТАЯ ЛАТУНЬ 2015
  • Брусницын Сергей Викторович
  • Логинов Юрий Николаевич
  • Мысик Раиса Константиновна
  • Сулицин Андрей Владимирович
  • Ивкин Максим Олегович
RU2613234C2
СПОСОБ ВЫПЛАВКИ МНОГОКОМПОНЕНТНОЙ ЛАТУНИ 2018
  • Брусницын Сергей Викторович
  • Мысик Раиса Константиновна
  • Логинов Юрий Николаевич
  • Сулицин Андрей Владимирович
  • Груздева Ирина Александровна
RU2688799C1
ЛАТУНЬ ДЛЯ КОЛЕЦ СИНХРОНИЗАТОРОВ И СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК 2020
  • Святкин Алексей Владимирович
  • Овчинников Александр Сергеевич
RU2763371C2
ФЛЮС ДЛЯ ЗАЩИТНОГО ПОКРЫТИЯ РАСПЛАВА ЛАТУНИ 2018
  • Брусницын Сергей Викторович
  • Мысик Раиса Константиновна
  • Логинов Юрий Николаевич
  • Сулицин Андрей Владимирович
  • Груздева Ирина Александровна
RU2684132C1
ЛИГАТУРА ДЛЯ МОДИФИЦИРОВАНИЯ И ЛЕГИРОВАНИЯ СПЛАВОВ 2004
  • Мысик Раиса Константиновна
  • Логинов Юрий Николаевич
  • Брусницын Сергей Викторович
  • Рязанцев Юрий Васильевич
  • Лащенко Дмитрий Дмитриевич
  • Титова Анна Григорьевна
  • Кузьмин Олег Сергеевич
RU2270266C2
СПОСОБ ИЗГОТОВЛЕНИЯ ФОЛЬГОВОЙ ЗАГОТОВКИ ИЗ СПЛАВА АЛЮМИНИЙ-ЖЕЛЕЗО-КРЕМНИЙ 2006
  • Баранов Михаил Владимирович
  • Логинов Юрий Николаевич
  • Бажин Владимир Юрьевич
  • Мысик Раиса Константиновна
RU2305022C1
МЕДНО-НИКЕЛЕВЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ 2005
  • Логинов Юрий Николаевич
  • Мысик Раиса Константиновна
  • Брусницын Сергей Викторович
  • Титова Анна Григорьевна
  • Лащенко Дмитрий Дмитриевич
  • Исаков Николай Николаевич
RU2303641C2
СПОСОБ ПРОИЗВОДСТВА ЛИГАТУРЫ НА ОСНОВЕ НИКЕЛЯ И МАГНИЯ 2007
  • Исаков Николай Николаевич
  • Логинов Юрий Николаевич
  • Мысик Раиса Константиновна
  • Титова Анна Григорьевна
  • Брусницын Сергей Викторович
  • Еремин Алексей Александрович
  • Котов Дмитрий Анатольевич
RU2347836C1
СОВМЕСТИМЫЙ СО СМАЗОЧНЫМ МАТЕРИАЛОМ МЕДНЫЙ СПЛАВ 2015
  • Гуммерт, Герман
  • Реетц, Бьёрн
  • Плетт, Томас
RU2661960C1
МЕДНО-ЦИНКОВЫЙ СПЛАВ, А ТАКЖЕ ИЗГОТОВЛЕННОЕ ИЗ НЕГО БЛОКИРУЮЩЕЕ КОЛЬЦО СИНХРОНИЗАТОРА 2006
  • Гааг Норберт
  • Хольдерид Майнрад
  • Гебхард Фридрих
RU2415188C2

Иллюстрации к изобретению RU 2 382 099 C2

Реферат патента 2010 года ЛИТАЯ ЗАГОТОВКА ИЗ ЛАТУНИ ДЛЯ ИЗГОТОВЛЕНИЯ КОЛЕЦ СИНХРОНИЗАТОРОВ

Изобретение относится к области металлообработки, в частности к производству трубных заготовок из медных сплавов. Предложена литая заготовка из латуни для изготовления колец синхронизаторов. Латунь содержит добавки марганца, алюминия, железа, кремния, свинца и титана. Структура состоит из α-фазы, двухфазных областей (α+β')-смеси фаз и силицидов марганца и железа (Fe, Mn)5Si3. Содержание титана в латуни составляет 0,01-0,07 мас.% при содержании титана в двухфазных областях (α+β')-смеси фаз 0,04-0,18 мас.%, а в силицидах марганца и железа (Fe,Mn)5Si3 - 0,06-0,26 мас.%. Повышается технологическая прочность и пластичность литых заготовок. 1 ил., 1 табл.

Формула изобретения RU 2 382 099 C2

Литая заготовка из латуни для изготовления колец синхронизаторов, содержащей добавки марганца, алюминия, железа, кремния, свинца и титана, отличающаяся тем, что она имеет структуру, состоящую из α-фазы, двухфазных областей (α+β')-смеси фаз и силицидов марганца и железа (Fe,Mn)5Si3, содержание титана в латуни составляет 0,01-0,07 мас.% при содержании титана в двухфазных областях (α+β')-смеси фаз 0,04-0,18 мас.%, а в силицидах марганца и железа (Fe,Mn)5Si3 - 0,06-0,26 мас.%.

Документы, цитированные в отчете о поиске Патент 2010 года RU2382099C2

Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
СПЛАВ НА ОСНОВЕ МЕДИ 1998
  • Шишин В.П.
  • Кожинский Б.С.
  • Сидякин А.В.
  • Трифонов А.И.
RU2148098C1
Режущая пластина для тяжелого резания 1989
  • Гузенко Виталий Семенович
  • Гах Виталий Михайлович
  • Спасов Михаил Викторович
  • Медведев Вячеслав Степанович
SU1690952A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1

RU 2 382 099 C2

Авторы

Волков Михаил Ильич

Логинов Юрий Николаевич

Жукова Людмила Михайловна

Титова Анна Григорьевна

Мысик Раиса Константиновна

Даты

2010-02-20Публикация

2007-12-06Подача